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This paper formalises within first-order logic some common practices in computer

science to do with representing and reasoning about syntactical structures involving lex-

ically scoped binding constructs. It introduces Nominal Logic, a version of first-order

many-sorted logic with equality containing primitives for renaming via name-swapping,

for freshness of names, and for name-binding. Its axioms express properties of these

constructs satisfied by the FM-sets model of syntax involving binding, which was recently

introduced by the author and M. J. Gabbay and makes use of the Fraenkel-Mostowski per-

mutation model of set theory. Nominal Logic serves as a vehicle for making two general

points. First, name-swapping has much nicer logical properties than more general, non-

bijective forms of renaming while at the same time providing a sufficient foundation for a

theory of structural induction/recursion for syntax modulo α-equivalence. Secondly, it is

useful for the practice of operational semantics to make explicit the equivariance property

of assertions about syntax—namely that their validity is invariant under name-swapping.
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1. INTRODUCTION

It is commonplace, when using formal languages in computer science or math-
ematical logic, to abstract away from details of concrete syntax in terms of strings
of symbols and instead work solely with parse trees—the ‘abstract syntax’ of a
language. Doing so gives one access to two extremely useful and inter-related tools:
definition by recursion on the structure of parse trees and proof by induction on
that structure. However, conventional abstract syntax is not abstract enough if the
formal language involves variable-binding constructs. In this situation the common
practice of human (as opposed to computer) provers is to say one thing and do an-
other. We say that we will quotient the collection of parse trees by a suitable equiv-
alence relation of α-conversion, identifying trees up to renaming of bound variables;
but then we try to make the use of α-equivalence classes as implicit as possible by
dealing with them via suitably chosen representatives. How to make good choices of
representatives is well understood, so much so that it has a name—the ‘Barendregt
Variable Convention’: choose a representative parse tree whose bound variables are
fresh, i.e. mutually distinct and distinct from any (free) variables in the current
context. This informal practice of confusing an α-equivalence class with a mem-
ber of the class that has sufficiently fresh bound variables has to be accompanied
by a certain amount of hygiene on the part of human provers: our constructions
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and proofs have to be independent of which particular fresh names we choose for
bound variables. Nearly always, the verification of such independence properties is
omitted, because it is tedious and detracts from more interesting business at hand.
Of course this introduces a certain amount of informality into ‘pencil-and-paper’
proofs that cannot be ignored if one is in the business of producing fully formalised,
machine-checked proofs. But even if you are not in that business and are content
with your pencil and paper, I think there is a good reason to examine this informal
use of ‘sufficiently fresh names’ and put it on a more precise, mathematical footing.

The reason I have in mind has to do with those intuitive and useful tools men-
tioned above: structural recursion for defining functions on parse trees and struc-
tural induction for proving properties of them. Although it is often said that the
Barendregt Variable Convention allows one to work with α-equivalence classes of
parse trees as though they were just parse trees, this is not literally the case when
it comes to structural recursion/induction. For example, when dealing with an in-
duction step for a variable-binding construct, it often happens that the step can be
proved for a sufficiently fresh bound variable, but not for an arbitrary one, as the
induction principle demands. The Barendregt Variable Convention papers over the
crack in the proof at this point by preventing one considering the case of an arbi-
trary bound variable rather than a fresh one, but the crack is still there. Although
one can sometimes side-step the problem by using a suitable size function on parse
trees and replacing structural induction with mathematical induction, this is not a
very satisfying solution. The size function will be defined by structural recursion
and the crucial fact that α-equivalent parse trees have the same size will be proved
by structural induction; so we are using structural recursion/induction anyway, but
somehow not in the direct way we would like. We can do better than this.

Indeed, the work reported in [16, 17, 35] does do better, by providing a math-
ematical notion of ‘sufficiently fresh name’ that remains very close to the infor-
mal practice described above while enabling α-equivalence classes of parse trees to
gain useful inductive/recursive properties. The theory stems from the somewhat
surprising observation that all of the concepts we need (α-equivalence, freshness,
variable-binding, . . . ) can be defined purely in terms of the operation of swapping
pairs of names. In particular, the freshness of a name for an object is expressed by
saying that the name is not in some finite set of names that supports the object,
which means that the finite set has the property that swapping any pair of names
not in it leaves the object unchanged. This notion of support is weak second order,
since it involves an existential quantification over finite sets of names. However,
much of the development in [17] only makes use of certain first-order properties of
the freshness (i.e. ‘not-in-the-support-of’) predicate in combination with the swap-
ping operation. This paper presents this first-order theory of names, swapping and
freshness, called Nominal Logic.

Outline of the paper

Section 2 presents some motivations for basing a theory of syntax and binders
upon the notions of atoms (names), swapping atoms, and freshness of atoms. Sec-
tion 3 introduces the syntax we use for these concepts, together with some typical
examples of what can be expressed with them. As explained in [17], the Nominal
Logic notions of atom, swapping and freshness can be given a meaning indepen-
dent of any particular object-level syntax using FM-sets—the Fraenkel-Mostowski
permutation model of set theory; in Section 4 we describe the category of nomi-
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nal sets, which provides a simplified presentation of FM-sets emphasising swapping
over more general permutations of atoms. Then in Section 5 we axiomatise the key
first-order properties of the nominal sets model of atoms, swapping and freshness.
Section 6 makes a definitional extension of this theory with a quantifier expressing
a characteristic ‘some/any’ property of fresh atoms. In Section 7 we make another
definitional extension to deal with variable-binding operations in a more uniform
way. This completes the definition of Nominal Logic, which is summarised in Ap-
pendix A. Section 7 illustrates its use by presenting a first-order theory of λ-terms
modulo α-equivalence containing a convenient structural induction axiom. Sec-
tion 8 discusses the fact that Nominal Logic is incompatible with the use of choice
functions to select a ‘next’ fresh atom in any particular context. Finally, Sections 9
and 10 describe some related approaches to fully formal treatments of names and
binding and draw some conclusions.

2. EQUIVARIANT PREDICATES

The fundamental assumption underlying Nominal Logic is that the only pred-
icates we ever deal with (when describing properties of syntax) are equivariant
ones, in the sense that their validity is invariant under swapping (i.e. transposing,
or interchanging) names.

Names of what? Names of entities that may be subject to binding by some of
the syntactical constructions under consideration. In Nominal Logic these sorts of
names, the ones that may be bound and hence that may be subjected to swapping
without changing the validity of predicates involving them, will be called atoms.
The terminology refers back to the origins of the theory in the Fraenkel-Mostowski
permutation model of set theory. Atoms turn out to have quite different logical
properties from constants (in the usual sense of first-order logic) which, being con-
stant, are not subjected to swapping. Note that this distinction between atom and
constant has to do with the issue of binding, rather than substitution: a syntac-
tic category of variables, by which is usually meant entities that may be subject
to substitution, might be represented in Nominal Logic by atoms or by constants,
depending upon circumstances: constants will do if we are in a situation where
variables are never bound, but can be substituted for; otherwise we should use
atoms. The interesting point is that we can make this (useful!) distinction between
‘bindable’ names and names of constants entirely in terms of properties of swapping
names, prior to any discussion of substitution and its properties.

Why the emphasis on the operation of swapping two names, rather than on the
apparently more primitive notion of renaming one name by another? The answer
to this question lies in the combination of the following two facts.

• First, even though swapping seems less general than renaming (since after all,
the act of swapping a and b can be expressed as the simultaneous renaming
of b by a and a by b), it is possible to found a theory of syntax modulo α-
equivalence, free and bound variables, substitution, etc., upon this notion—
this is the import of the work in [17].

• Secondly, swapping is an involutive operation: a swap followed by the same
swap is equivalent to doing nothing. This means that the class of equivariant
predicates, i.e. those whose validity is invariant under atom-swapping, has
excellent logical properties. It contains the equality predicate and is closed
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under negation, conjunction, disjunction, existential and universal quantifi-
cation, formation of least and greatest fixed points of monotone operators,
etc., etc. The same is not true for renaming. For example, the validity of a
negated equality between atoms is not necessarily preserved under renaming.

In other words we can found a theory of variable-binding upon swapping, and it
is convenient to do so because of its good logical properties. Here are a couple of
examples to illustrate these points, taken from lambda calculus and type theory.

Example 1 (α-equivalence of λ-terms). Consider the terms of the untyped λ-
calculus, which we can take to be α-equivalence classes [t]α of parse trees t given
by the grammar

t ::= a | λa.t | t t (1)

where a ranges over an infinite set of variables. The relation of α-equivalence be-
tween such parse trees, t ∼α t′, is usually defined to be the congruence generated by
relating λa.t and λb.{b/a}t if there are no occurrences of b in t (be they free, bound
or binding occurrences). Here {b/a}t is the parse tree obtained from t by replacing
all free occurrences of a with b. The properties of this form of renaming are rather
inconvenient for our aim of developing a theory of variable-binding in which logi-
cal equality subsumes α-equivalence. This is because the operation {b/a}(−), as a
total function on all parse trees, does not necessarily respect α-equivalence when
applied to trees that do contain occurrences of b—because of the possible ‘cap-
ture’ of b by binders λb.(−) occurring in t. (For example λb.a ∼α λc.a holds, but
{b/a}(λb.a) = λb.b �α λc.b = {b/a}(λc.a).) In the development of the theory of
lambda calculus [1], this inconvenient fact immediately leads to the formulation of
more complicated, ‘capture-avoiding’ notions of renaming and substitution. How-
ever, it is possible to go in the other direction and replace {b/a}(−) with another,
equally simple form of renaming which does respect α-equivalence whatever term
it is applied to. For as pointed out in [17, Section 2], if b does not occur in t, then
{b/a}t is α-equivalent to the parse tree obtained from t by swapping all occurrences
of a and b (be they free, bound, or even binding occurrences): we denote this parse
tree by (a b) ·t. The total function (a b) ·(−) on parse trees is in a sense more funda-
mental than {b/a}(−), because its definition does not depend upon knowing what
is a free variable, i.e. upon knowing which of the syntax-constructors is supposed to
be a binder: for the definition of (a b) · (−) on a λ-abstraction term takes just the
same form as for an application term—one just applies the swap to all immediate
subtrees:

(a b) · (λc.t) = λ((a b) · c).((a b) · t)
(a b) · (t t′) = ((a b) · t)((a b) · t′)

where (a b) · c =





a if c = b

b if c = a

c otherwise.

Proposition 2.2 of [17] proves that the relation ∼α can be inductively generated by
syntax-directed rules of the following three kinds.

a ∼α a (2)

t1 ∼α t′1 t2 ∼α t′2
t1 t2 ∼α t′1 t′2

(3)
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(a b) · t ∼α (a′ b) · t′
λa.t ∼α λa′.t′

b 6= a, a′ and b does not occur in t or t′ (4)

It is immediate from this characterisation of ∼α that it is equivariant, in the sense
that

for all t and t′, t ∼α t′ implies (a b) · t ∼α (a b) · t′

(a property that we have noted does not hold for the renaming operation {b/a}(−)).
The reason why the equivariance property holds is quite general: any relation
inductively defined by an equivariant set of rules (in the sense that swapping a
pair of names throughout the hypotheses and conclusion of any rule yields another
element of the set of rules) is easily seen to be an equivariant relation, i.e. closed
under applying the swapping operation. And as we mentioned above, once we know
that ∼α is equivariant, so will be predicates built up from it using the usual logical
operations. To illustrate the usefulness of this observation, consider proving from
the above inductive characterisation of ∼α that it is transitive. We can proceed by
‘rule induction’ and show that the relation

ϕ(t, t′) , (∀t′′) t′ ∼α t′′ ⇒ t ∼α t′′ (5)

is closed under the rules (2)–(4) inductively defining ∼α. We will just consider the
case of the third rule, since it illustrates the usefulness of equivariance.

So suppose we have
ϕ((a b) · t, (a′ b) · t′) (6)

where b 6= a, a′ and b does not occur in t or t′. We have to show that ϕ(λa.t, λa′.t′)
holds, i.e. that for any t′′, λa′.t′ ∼α t′′ implies λa.t ∼α t′′. Now the syntax-directed
nature of the rules comes to our aid: if λa′.t′ ∼α t′′ holds, it must have been
deduced by an application of rule (4): so t′′ = λa′′.t′′′ say, and

(a′ c) · t′ ∼α (a′′ c) · t′′′ (7)

holds for some c 6= a′, a′′ with c not occurring in t′ or t′′′. Let d be a fresh variable,
i.e. one not occurring in t, t′, or t′′ and not in {a, a′, a′′, b, c}. Now we use the
equivariance property of ϕ: since (6) holds, so does the predicate with b and d
swapped throughout; and since b and d do not occur in t or t′ and are not equal to
a or a′, the result of this swapping is provably equivalent to

ϕ((a d) · t, (a′ d) · t′). (8)

Similarly, the equivariance property of ∼α itself means that by swapping c and d
in (7), we also have

(a′ d) · t′ ∼α (a′′ d) · t′′′. (9)

Remembering the definition of ϕ, (8) and (9) combine to yield

(a d) · t ∼α (a′′ d) · t′′′

and since d 6= a, a′′ and d does not occur in t or t′′, we can apply rule (4) to this to
deduce λa.t ∼α λa′′′.t′′′, i.e. λa.t ∼α t′′, as required.

Example 2 (Weakening in type theory). McKinna and Pollack [28] note that
in the näıve approach to named bound variables referred to in the Introduction,
there is a difficulty with proving the weakening property of type systems by rule
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induction. For example, consider the usual typing relation assigning simple types
to terms of the untyped λ-calculus. As in the previous example, we take the latter
to mean α-equivalence classes [t]α of parse trees t given by the grammar (1). The
typing relation takes the form Γ ` [t]α : τ , where types τ are given by the grammar
τ ::= X | τ → τ (with X ranging over an infinite collection of type variables);
and where the typing context Γ is a finite partial function from variables to types.
The typing relation is inductively generated by rules following the structure of the
parse tree t. (If the reader is not familiar with these rules, see [19, Chapter 2],
for example; but note that as mentioned in the Introduction, the literature usually
does not bother to make a notational distinction between t and [t]α.)

When trying to prove the weakening property of the typing relation, namely

(∀Γ)(∀t)(∀τ) Γ ` [t]α : τ ⇒ (∀τ ′)(∀a′ /∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ (10)

it is natural to try to proceed by rule induction and show that the predicate
ϕ(Γ, [t]α, τ) given by

(∀τ ′)(∀a′ /∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ

defines a relation that is closed under the rules inductively defining the typing
relation and hence contains that relation. But the induction step for the rule for
typing λ-abstractions

Γ, a : τ1 ` [t]α : τ2

Γ ` [λa.t]α : τ1 → τ2
a /∈ dom(Γ) (11)

is problematic: we have to prove

ϕ(Γ, a : τ1, [t]α, τ2) ∧ a /∈ dom(Γ) ⇒ ϕ(Γ, [λa.t]α, τ1 → τ2);

i.e. given
ϕ(Γ, a : τ1, [t]α, τ2) (12)

and
a /∈ dom(Γ), (13)

we have to prove that
Γ, a′ : τ ′ ` [λa.t]α : τ1 → τ2 (14)

holds for all a′ /∈ dom(Γ) (and all τ ′)—and there is a problem with doing this for
the case a′ = a.

But this difficulty with the induction step is easily circumvented if we take
equivariance into account. The axioms and rules defining typing are closed under
the operations of swapping pairs of variables (and also under swapping pairs of type
variables, but we do not need to use that here). For example, if we have an instance
of rule (11) and we swap any pair of variables throughout both the hypotheses and
the conclusion, we get another valid instance of this rule.1 As we mentioned in
the previous example, it follows from this swapping property of the axioms and
rules that the typing relation, being the least relation closed under the axioms and
rules, is also closed under the swapping operations. Therefore any assertion about

1To see this, strictly speaking we have to make use of the fact, noted in Example 1, that
(a b) · (−) preserves ∼α and hence that the result of swapping a and b throughout the set [t]α is
the equivalence class [(a b) · t]α.
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typing that we make by combining the typing relation with other such equivariant
predicates (such as ‘a ∈ dom(Γ)’) using the usual logical connectives and quantifiers
will be equivariant. In particular the predicate ϕ defined above is equivariant.
Thus if we know that (12) holds, then so does ϕ(Γ, b : τ1, [(a b) · t]α, τ2) for any
fresh variable b (i.e. one not occurring in Γ, t, or {a, a′}). So by definition of
ϕ, since a′ /∈ dom(Γ, b : τ1), we have (Γ, b : τ1), a′ : τ ′ ` [(a b) · t]α : τ2. Since
(Γ, b : τ1), a′ : τ ′ = (Γ, a′ : τ ′), b : τ1 (we are using partial functions for typing
contexts) and b /∈ dom(Γ, a′ : τ ′) (by choice of b), we can apply typing rule (11)
to conclude that Γ, a′ : τ ′ ` [λb.((a b) · t)]α : τ1 → τ2. But λb.((a b) · t) and λa.t
are α-equivalent parse trees, so Γ, a′ : τ ′ ` [λa.t]α : τ1 → τ2 holds. Thus if (12)
and (13) hold, so does ϕ(Γ, [λa.t]α, τ1 → τ2) and we have completed the induction
step.

From the considerations of this section we abstract the following ingredients for
a language to describe syntax involving names and binding: the language should
contain a notion of atom together with operations for swapping atoms in expressions
(in general we may need several different sorts of atoms—for example, atoms for
variables and atoms for type variables in Example 2); and the formulas of the lan-
guage should all be equivariant with respect to these swapping operations. Atoms
and swapping are two of the three novelties of Nominal Logic. The third has to
do with the crucial step in the proofs in Examples 1 and 2 when we chose a fresh
variable (d in the first example and b in the second one): we need to give a fresh-
ness relation between atoms and expressions with sufficient properties to make such
arguments go through.

3. SYNTAX OF SWAPPING AND FRESHNESS

The syntax of Nominal Logic is that of many-sorted first-order logic with equal-
ity, augmented by the following extra features.

• The collection of sorts (typical symbol S) is partitioned into two kinds: sorts
of atoms (typical symbol A) and sorts of data.

• For each sort of atoms A and each sort S there is a distinguished function
symbol of arity A,A, S −→ S whose effect on terms t1 : A, t2 : A and t3 : S
we write as the term (t1 t2) · t3 and pronounce ‘swap t1 and t2 in t3’.

• For each sort of atoms A and each sort S there is a distinguished relation
symbol of arity A,S whose effect on terms t1 : A and t2 : S we write as the
formula t1 # t2 and pronounce ‘t1 is fresh for t2’.

Later on we will add extra syntax for freshness quantification (Section 6) and atom-
abstraction sorts and terms (Section 7). These extra concepts are first-order defin-
able in terms of the basic ones given above, so we stick with these for the moment
for simplicity’s sake.

Just as for ordinary first-order logic, a theory in Nominal Logic is specified by
a signature of sort, function and relation symbols, together with a collection of
(non-logical) axioms, which are first-order formulas built up in the usual way from
variables and the symbols of the signature, but now of course possibly using the
swapping functions and the freshness relation. Here is an example of how this
language of Nominal Logic can be used; we formalise some familiar concepts from
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λ-calculus in it. Exploring the logical properties of these formalisations has to wait
until we introduce the axioms of Nominal Logic in Section 5.

Example 3 (α, β, and η equivalence). Consider the following signature for λ-
calculus, with a sort of atoms for variables and a sort of data for λ-terms over those
variables.

Sort of atoms: Var

Sort of data: Term

Function symbols: var : Var −→ Term
app : Term,Term −→ Term
lam : Var ,Term −→ Term

As discussed in Example 1, we can use swapping and freshness to express α-
conversion:

(∀a, a′ : Var)(∀t : Term) a′ # t ⇒ lam(a, t) = lam(a′, (a a′) · t) (15)

Instead of axiomatising α-conversion on a theory-by-theory basis, in Section 7 we
move it into the logical infrastructure via a notion of atom-abstraction. In partic-
ular, we can then take lam to be a function symbol of arity [Var ]Term −→ Term,
where [Var ]Term is a sort of atom-abstractions (see Definition 4), whose logical
properties ensure that extra axioms for α-conversion like (15) are no longer neces-
sary.

Another typical use of the freshness relation # is to internalise the usual side-
condition on η-conversion, as in the following axiom:

(∀a : Var)(∀t : Term) a# t ⇒ t = lam(a, app(t, var(a))) (16)

How may we express β-conversion in this language? One way is to augment the
signature with a function symbol for capture-avoiding substitution

subst : Term,Var ,Term −→ Term

and then express β-conversion by

(∀a : Var)(∀t, t′ : Term) app(lam(a, t′), t) = subst(t, a, t′) (17)

together with axioms for substitution:

(∀t : Term)(∀a : Var) subst(t, a, var(a)) = t (18)

(∀t : Term)(∀a, a′ : Var) ¬ a = a′ ⇒ subst(t, a, var(a′)) = var(a′) (19)

(∀t, t′, t′′ : Term)(∀a : Var) subst(t, a, app(t′, t′′)) =
app(subst(t, a, t′), subst(t, a, t′′))

(20)

(∀t, t′ : Term)(∀a, a′ : Var) ¬ a′ = a ∧ a′ # t ⇒
subst(t, a, lam(a′, t′)) = lam(a′, subst(t, a, t′))

(21)

Since the last axiom only specifies how to substitute under a λ-binder when the
bound variable a′ is sufficiently fresh, i.e. when ¬ a′ = a and a′#t, it might seem that
the axioms for subst do not specify it uniquely. However, in view of axiom (15), any
lam(a′, t′) is equal to some lam(a′′, t′′) for which the freshness condition is satisfied.
In Section 7, we give a theory in Nominal Logic for λ-terms modulo α-equivalence
(Example 6) that includes a structural induction principle codifying this familiar
practice of only dealing with λ-abstractions whose bound variables are sufficiently
fresh.
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4. NOMINAL SETS

As explained in [17], the Nominal Logic notions of atom, swapping and freshness
can be given a meaning independent of any particular object-level syntax using
FM-sets—the Fraenkel-Mostowski permutation model of set theory. Here we give
a simplified, but essentially equivalent, presentation of FM-sets that emphasises
swapping over more general permutations of atoms. At the same time we use a
mild generalisation of [17] (mentioned in [16, Section 7]) in which the set of atoms
is partitioned into countably many different kinds (and we only swap atoms of the
same kind).

Fix a countably infinite family (An | n ∈ N) of pairwise disjoint, countably
infinite sets. We write A for the union of all the An and call its elements atoms.

Definition 1 (Nominal sets). A nominal set X is a set |X| equipped with a
well-behaved notion of swapping atoms in elements of the set. By definition this
means that for each element x ∈ |X| and each pair of atoms a, a′ of the same kind
(i.e. a, a′ ∈ An for some n ∈ N), we are given an element (a a′) ·X x of X, called the
result of swapping a and a′ in x. These swapping operations are required to have
the following properties:

(i) Equational properties of swapping: for each x ∈ |X| and all pairs of
atoms of equal sort, a, a′ ∈ Am and b, b′ ∈ An (any m,n ∈ N)

(a a) ·X x = x (22)

(a a′) ·X (a a′) ·X x = x (23)

(a a′) ·X (b b′) ·X x = ((a a′)b (a a′)b′ ) ·X (a a′) ·X x (24)

where

(a a′)b ,





a if b = a′

a′ if b = a

b otherwise

(25)

and similarly for (a a′)b′.

(ii) Finite support property: we require that each x ∈ |X| only involve finitely
many atoms, in the sense that given x, there exists a finite subset w ⊆ A with
the property that (a a′) ·X x = x holds for all a, a′ ∈ An − w (any n ∈ N).
Then it can be shown that

suppX(x) ,
⋃

n∈N
{a ∈ An | {a′ ∈ An | (a a′) ·X x 6= x} is not finite} (26)

is a finite set of atoms (see the proof of [17, Proposition 3.4]), which we call
the support of x in X.

A morphism of nominal sets, f : X −→ Y , is by definition a function from the set
|X| to the set |Y | that respects the swapping operations in the sense that

f((a a′) ·X x) = (a a′) ·Y f(x) (27)

holds for all x ∈ |X| and all atoms a, a′ (of the same kind). Clearly the composi-
tion of two such functions is another such; and identity functions are morphisms.
Therefore nominal sets and morphisms form a category, which we denote by Nom.
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Remark 1 (From swapping to permutations). It is a standard result of the math-
ematical theory of groups and group actions that the group of all permutations of
the n-element set {1, . . . , n} is isomorphic to the group freely generated by n − 1
symbols gi (i = 1, . . . , n− 1), subject to the identities

(gi)
2 = id (i < n)

(gi gi+1)3 = id (i < n− 1)

(gi gj)
2 = id (j < i− 1)

with the generator gi corresponding to the permutation transposing i and i + 1.
(See for example [24, Beispiel 19.7].) From this fact one can easily deduce that
the group of all (kind-respecting) finite permutations of the set of atoms A is freely
generated by the transpositions (a a′) (with a and a′ of the same kind, i.e. a, a′ ∈ An
for some n ∈ N), subject to the identities

(a a) = id

(a a′)(a a′) = id

(a a′)(b b′) = ((a a′)b (a a′)b′ )(a a′)

where the atoms (a a′)b and (a a′)b′ are defined as in equation (25). It follows that if
|X| is a set equipped with swapping operations satisfying equations (22)–(24), then
these operations extend uniquely to an action of all finite permutations on elements
of |X|. If |X| also satisfies property (ii) of Definition 1, then this action extends
uniquely to all (kind-respecting) permutations, finite or not; and the elements of |X|
have the finite support property for this action in the sense of [17, Definition 3.3].
These observations form the basis of a proof that the category Nom of Definition 1
is equivalent to the Schanuel topos [17, Section 7], which underlies the universe of
FM-sets used in [17].

It is not hard to see that products X×Y in the category Nom are given simply
by taking the cartesian product {(x, y) | x ∈ |X| ∧ y ∈ |Y |} of underlying sets and
defining the swapping operations componentwise:

(a a′) ·X×Y (x, y) , ((a a′) ·X x, (a a′) ·Y y).

(Clearly (x, y) has the finiteness property in X × Y required by Definition 1(ii),
because x has it in X and y has it in Y .) Similarly, the terminal object 1 in Nom
has a one-element underlying set and (necessarily) trivial swapping operations.

So we can interpret many-sorted first-order signatures in the category Nom:
sorts S are interpreted as objects [[S]]; function symbols f , of arity S1, . . . , Sn −→ S
say, as morphisms [[f ]] : [[S1]]× · · · × [[Sn]] −→ [[S]]; and relation symbols R, of arity
S1, . . . , Sn say, as subobjects of [[S1]]× · · ·× [[Sn]]. Indeed, Nom has sufficient prop-
erties to soundly interpret classical first-order logic with equality 2 using the usual
techniques of categorical logic—see [26], or [33, Section 5] for a brief overview. In
fact, readers unfamiliar with such techniques need not become so just to under-
stand the interpretation of first-order logic in the category of nominal sets, since it
is just like the usual Tarskian semantics of first-order logic in the category of sets
(at the same time remaining within the world of equivariant properties). For it is

2And much more besides, since it is equivalent to the Schanuel topos, but that will not concern
us here.
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not hard to see that the subobjects of an object X in the category Nom are in
bijection with the subsets A ⊆ |X| of the underlying set that are equivariant, in
the sense that (a a′) ·X x ∈ A whenever x ∈ A, for any atoms a, a′ (of the same
kind). As we mentioned in Section 2, the collection of equivariant subsets is closed
under all the usual operations of first-order logic and contains equality. So it just
remains to explain the interpretation in Nom of the distinctive syntax of Nominal
Logic—atoms, swapping and freshness.

Definition 2. Here is the intended interpretation of atoms, swapping and
freshness in the category of nominal sets of Definition 1.

Atoms. A sort of atoms in a Nominal Logic signature is interpreted by a nominal
set of atoms An (for some n ∈ N), which by definition has underlying set
|An| = An and is equipped with the swapping operations given by

(a a′) · b ,





a if b = a′

a′ if b = a

b otherwise

(where b ∈ An and a, a′ ∈ Am for any m ∈ N). We always assume that
distinct sorts of atoms are interpreted by distinct kinds of atoms. (So we
are implicitly assuming that signatures contain at most countably many such
sorts.)

Swapping. Note that by virtue of equation (24), the function a, a′, x 7→ (a a′) ·X x
determines a morphism An × An × X −→ X in the category Nom. This
morphism is used to interpret the distinguished function symbol A,A, S −→ S
for swapping, assuming the nominal set of atoms An is the interpretation of
the sort of atoms A and that X is the interpretation of S. Thus

[[(a a′) · s]] = ([[a]] [[a′]]) ·X [[s]] when s : S and [[S]] = X.

Freshness. The distinguished relation symbol # of arity A,S for freshness is in-
terpreted as the ‘not in the support of’ relation (−) /∈ suppX(−) between
atoms and elements of nominal sets. Thus if the nominal set of atoms An is
the interpretation of the sort of atoms A and X is the interpretation of the
sort S, then for terms a : A, s : S, the formula a# s is satisfied by the inter-
pretation if and only if [[a]] /∈ suppX([[s]]), where suppX is as in equation (26).
(It is not hard to see that this is an equivariant subset of An× |X| and hence
determines a subobject of [[A]]× [[S]] in Nom.)

We turn next to an axiomatisation within first-order logic of properties of this
nominal sets interpretation of atoms, swapping and freshness.

5. NOMINAL LOGIC AXIOMS

For simplicity, we will use a Hilbert-style presentation of Nominal Logic: a
single rule of Modus Ponens, the usual axiom schemes of first-order logic with
equality, plus axiom schemes for swapping and freshness. These latter are listed
in Appendix A as (S1)–(S3), (E1)–(E4) and (F1)–(F4). (The appendix also
gives axioms for the freshness quantifier and atom-abstraction constructs that we
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consider in later sections.) Axiom scheme (F4) expresses within our first-order
language the very important principle that there is a sufficient supply of fresh
atoms, in the sense that it is not finitely exhaustible. The other axioms express
rather anodyne properties of swapping and freshness. Indeed, the following results
show that these axioms validate the properties of swapping given in Section 4 and
the fundamental assumption mentioned at the start of Section 2, namely that all
properties expressible in Nominal Logic are invariant under swapping atoms.

Proposition 1 (Equational properties of swapping). The equations in part (i)
of Definition 1 are all provable in Nominal Logic.

Proof. Equations (22), (23) and (24) are just axioms (S1), (S2) and (E1) re-
spectively. Equation (25) corresponds to four properties (taking into account the
fact that we allow more than one sort of atoms):

(∀a, a′ : A) (a a′) · a = a′ (28)

(∀a, a′ : A) (a a′) · a′ = a (29)

(∀a, a′, b : A) ¬b = a ∧ ¬b = a′ ⇒ (a a′) · b = b (30)

(∀a, a′ : A)(∀b : A′) (a a′) · b = b (31)

where A and A′ are different sorts of atoms. Property (28) is just axiom (S3);
applying (a a′) · (−) to both sides of the equation in (28) and using axiom (S2), we
obtain (29). Property (30) follows from axioms (F1) and (F2); and property (31)
from (F1) and (F3).

Proposition 2 (Equivariance). For each term t and formula ϕ, with free vari-

ables amongst ~x : ~S say, we have

(∀a, a′ : A)(∀~x : ~S) (a a′) · t(~x) = t((a a′) · ~x) (32)

(∀a, a′ : A)(∀~x : ~S) ϕ(~x)⇔ ϕ((a a′) · ~x) (33)

where t((a a′) · ~x) denotes the result of simultaneously substituting (a a′) · xi for xi
in t (as xi ranges over ~x) and similarly for ϕ((a a′) · ~x).

Proof. Property (32) follows from axioms (E1) and (E3), by induction on the
structure of the term t. For (33) we proceed by induction on the structure of the
formula ϕ, using standard properties of first-order logic for the induction steps for
connectives and quantifiers. Note that by virtue of axiom (S2), equation (33) holds
if and only if

(∀a, a′ : A)(∀~x : ~S) ϕ(~x)⇒ ϕ((a a′) · ~x) (34)

does. So the base case when ϕ is equality follows from the usual axioms for equality,
the base case for the freshness predicate # follows from axiom (E2), and that for
relation symbols from axiom (E4) (using (32) in each case).

Theorem 1 (Soundness). The axioms of Nominal Logic (see Appendix A) are
all satisfied by the nominal sets interpretation of atoms, swapping and freshness
given in Definition 2.
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(At the moment we are only considering the axioms (S1)–(S3), (E1)–(E4) and
(F1)–(F4) of Appendix A, but the proposition remains true for the nominal sets
interpretation of the freshness quantifier and atom-abstraction given below.)

Proof. Satisfaction of axioms (S1)–(S3) and (E1) is guaranteed by part (i) of
Definition 1 (since the swapping action for a nominal set of atoms is given by
equation (25)). Satisfaction of axioms (E2) and (F1)–(F3) is a simple consequence
of the definition of support in equation (26). Axioms (E3) and (E4) are satisfied
because function and relation symbols are interpreted by morphisms and subobjects
in the category of nominal sets, which have these equivariance properties. Finally,
axiom (F4) is satisfied because the support of an element of a nominal set is a finite
subset of the fixed, countably infinite set A of all atoms.

Did we forget any axioms? In other words are the axiom schemes in Appendix A
complete for the intended interpretation in the category of nominal sets? Ax-
iom (F4) says that there is an inexhaustible supply of atoms that are fresh, i.e. not
in the support of elements in the current context. This is certainly a consequence of
property (ii) of Definition 1, which guarantees that elements of nominal sets have
finite support. However, that property is ostensibly a statement of weak second
order logic, since it quantifies over finite sets of atoms. So we should not expect
Nominal Logic, a first-order theory, to completely axiomatise the notion of finite
support. Example 4 confirms this expectation. Before giving it we state a useful
property of freshness in Nominal Logic that we need below.

Proposition 3. For any term t, with variables amongst the list of distinct
variables ~x : ~S say, we have

(∀a : A)(∀~x : ~S) a# ~x⇒ a# t(~x) (35)

where we write a# ~x for the finite conjunction of the formulas a# xi as xi ranges
over ~x.

Proof. Given any a : A and ~x : ~S, by axiom (F4) there is some a′ : A with a′#~x
and a′# t(~x). So if a# ~x, then by axiom (F1) (a a′) · xi = xi holds for each xi. So
since a′ # t(~x) by choice of a′, we have

a = (a a′) · a′ by axioms (S2) and (S3)

# (a a′) · t(~x) by axiom (E2)

= t((a a′) · ~x) by (32)

= t(~x) by axiom (F1)

as required.

Corollary 1. If a Nominal Logic theory contains a closed term t : A (i.e. one
with no variables3) with A a sort of atoms, then it is an inconsistent theory.

Proof. Suppose that A is a sort of atoms and that t : A is a term with no
variables. By the above proposition we have (∀a : A) a # t. Thus t # t and by
axiom (F2) this means ¬ t = t, contradiction.

Example 4 (Incompleteness). Consider the following Nominal Logic theory.

3Since the syntax of Nominal Logic does not contain any binding constructs at the level of
terms, all occurrences of variables in terms are free ones.
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Sort of atoms: A

Sorts of data: D,N

Function symbols: o : N
s : N −→ N
f : D,N −→ A

Axioms:

(∀x : N) ¬ o = s(x)

(∀x, x′ : N) s(x) = s(x′)⇒ x = x′

Claim: any model of this theory in the category of nominal sets satisfies the formula

(∀y : D)(∃x, x′ : N) ¬x = x′ ∧ f(y, x) = f(y, x′) (36)

but that formula cannot be proved in Nominal Logic from the axioms of the theory.

Proof of Claim. Note that in any model of this theory in the category Nom,
the interpretation of the closed terms nk : N (k ∈ N) defined by

{
n0 , o
nk+1 , s(nk)

are distinct elements [[nk]] ∈ |[[N ]]| of the nominal set [[N ]]. Therefore, to see that (36)
is satisfied by the model it suffices to show for each d ∈ |[[D]]| that [[f ]]([[nk1

]], d) =
[[f ]]([[nk2

]], d) ∈ |[[A]]| holds for some k1 6= k2 ∈ N. Note that [[A]] is a nominal set of
atoms, An say. Suppose to the contrary that all the [[f ]]([[nk]], d) are distinct atoms
in An. Then since the support supp [[D]](d) of d ∈ |[[D]]| is a finite subset of A, we
can find k1 6= k2 ∈ N so that

a1 , [[f ]]([[nk1
]], d) and a2 , [[f ]]([[nk2

]], d)

satisfy a1, a2 /∈ supp[[D]](d). We also have a1, a2 /∈ supp[[N ]](nk) for all k (using (35)
and the fact that the terms nk are closed). Hence a1, a2 /∈ suppAn([[f ]]([[nk]]), d)
and thus (a1 a2) ·An [[f ]]([[nk]], d) = [[f ]]([[nk]], d), for all k ∈ N. Taking k = k1 and
recalling the definition of a1 and a2, we conclude that

[[f ]]([[nk2
]], d) = a2 = (a1 a2) ·An a1 = (a1 a2) ·An [[f ]]([[nk1

]], d) = [[f ]]([[nk1
]], d)

with k1 6= k2, contradicting our assumption that all the [[f ]]([[nk]], d) are distinct.
To see that (36) is not provable in Nominal Logic it suffices to find a model,

in the usual sense of first-order logic, for the general axioms of Nominal Logic and
the particular axioms of this theory which does not satisfy (36). We can get such
a model by modifying Definition 1 and using an uncountable set of atoms and sets
equipped with swapping actions all of whose elements have countable support. More
concretely, we get a model M by taking [[A]]M to be an uncountable set, the set R
of real numbers say; taking [[N ]]M to be a countable subset of this set, the set N
of natural numbers say; and taking [[D]]M to be the set RN of all functions from
N to R (all such functions are countably supported). Define the interpretation of
the function symbols o, s and f to be respectively zero, successor (n 7→ n+ 1) and
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the evaluation function RN × N −→ R (d, n 7→ d(n)). The interpretation of the
swapping operation for sort A is as in equation (25) (i.e. (r r′) ·R r′′ = (r r′)r′′ for
all r, r′, r′′ ∈ R); for sort N , swapping is trivial (i.e. (r r′) ·N n = n for all r, r′ ∈ R
and n ∈ N); and for sort D, it is given by (r r′) ·RN d = λn ∈ N.(r r′) ·R d(n). The
interpretation of the freshness predicate for sort A is 6=; for sort N , it is trivial (i.e.
r # n holds for all r ∈ R and n ∈ N); and for sort D, r # d holds if and only if
r 6= d(n) for all n ∈ N. With these definitions one can check that all the axioms
are satisfied. However (36) is not satisfied, because the inclusion of N into R gives
an element d ∈ RN = [[D]]M for which n 7→ [[f ]]M (d, n) is injective.

Even though there is this incompleteness, it appears that the axioms of Nominal
Logic are sufficient for a useful theory of names and name-binding along the lines
of [17, 13]. Sections 6 and 7 give some evidence for this claim. We leave to another
occasion the investigation of whether the notion of ‘nominal set’ can be generalised
to provide a completeness result for Nominal Logic.

6. THE FRESHNESS QUANTIFIER

In this section we extend the Nominal Logic we have considered so far with
a quantifier for fresh atoms. We begin by proving, within the version of Nominal
Logic considered so far, the characteristic ‘some/any’ property of fresh atoms noted
in [17, Proposition 4.10].

Proposition 4. Suppose ϕ is a formula with free variables among the list of
distinct variables a : A, ~x : ~S (with A a sort of atoms). Then

(∃a : A) a# ~x ∧ ϕ(a, ~x) ⇔ (∀a : A) a# ~x⇒ ϕ(a, ~x) (37)

is provable in Nominal Logic.

Proof. If ϕ(a, ~x) holds, then by Proposition 2 and axiom (S3) we also have
ϕ(a′, (a a′) ·~x); so if a#~x and a′#~x, then axiom (F1) gives ϕ(a′, ~x). Thus we have
the left-to-right implication in (37).

Conversely suppose (∀a : A) a# ~x⇒ ϕ(a, ~x) holds. For any ~x : ~S, using axiom
(F4) we can find a : A such that a#~x and hence by the assumption, also satisfying
ϕ(a, ~x).

This property of freshness crops up frequently in proofs about syntax with
named bound variables (see [28] for example): we choose some fresh name with a
certain property and later on, in a wider context, we have to revise the choice to
accommodate finitely many more constraints and so need to know that we could
have chosen any fresh name with that property. For this reason it is convenient
to introduce a notation that tells us we have this ‘some/any’ property without
mentioning the context of free variables ~x explicitly. (Note that (37) holds for any
list ~x of distinct variables, so long as it contains the free variables of ϕ other than
the atom a being quantified over.

Definition 3 ( N-quantifier). We extend the syntax of formulas with a new
variable-binding operation which takes a formula ϕ, a sort of atoms A and a variable
a of that sort and produces a formula ( Na : A)ϕ whose free variables are those of
ϕ except a. We add the following axiom scheme that defines this new quantifier
within first-order logic in terms of the freshness relation #:

(( Na : A)ϕ(a, ~x))⇔ (∃a : A)a# ~x ∧ ϕ(a, ~x) (Q)
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where a, ~x is a list of distinct variables containing the free variables of ϕ. In view
of Proposition 4 we also have

(( Na : A)ϕ(a, ~x))⇔ (∀a : A) a# ~x⇒ ϕ(a, ~x)

and could have used this as the axiom defining N.

Remark 2. Because of the form of axiom (Q), it is easy to see that the equiv-
ariance property (33) of Proposition 2 continues to hold for formulas involving the

Nquantifier.

Evidence for the naturalness of the N-quantifier is provided by the fact that,
in the nominal sets semantics given in Section 3, it coincides with a cofiniteness
quantifier. For, using the right-hand side of axiom (Q) to give the semantics of
( Na : A) ϕ in the category of nominal sets, we find that it holds if and only if
ϕ(a) holds for all but finitely many atoms a. See [13] for the proof of this and
the development of the properties and applications of the N-quantifier within the
setting of FM-set theory.

Example 5 (α, β and η equivalence, version 2). We can re-express some of the
axioms considered in Example 3 using the N-quantifier. For the α-conversion ax-
iom (15), note that modulo the axioms of Nominal Logic it is equivalent to

(∀a : Var)(∀t : Term)(∀a′ : Var) a′ 6= a ∧ a′ # t ⇒ lam(a, t) = lam(a′, (a a′) · t).

So by Proposition 4, we can instead use the axiom

(∀a : Var)(∀t : Term)( Na′ : Var) lam(a, t) = lam(a′, (a a′) · t) (38)

Similarly, using Nwe can re-express the η-conversion axiom (16) as

(∀t : Term)( Na : Var) t = lam(a, app(t, var(a))) (39)

Finally, note that the last clause in the axiomatisation of capture-avoiding substi-
tution, axiom (21), could be expressed as

(∀t, t′ : Term)(∀a : Var)( Na′ : Var) subst(t, a, lam(a′, t′)) =

lam(a′, subst(t, a, t′)) (40)

Remark 3 (Alternative axiomatisations of N). It follows immediately from Def-
inition 3 and Proposition 4 that the N-quantifier satisfies

((∀a : A) a# ~x⇒ ϕ(a, ~x))⇒ ( Na : A)ϕ(a, ~x) (41)

and
(( Na : A)ϕ(a, ~x))⇒ (∃a : A) a# ~x ∧ ϕ(a, ~x) (42)

when a, ~x is a list of distinct variables containing the free variables of ϕ. In fact these
formulas provide an alternative axiomatisation of the N-quantifier which subsumes
the crucial axiom (F4) asserting a sufficient supply of fresh atoms. For modulo the
other axioms, one can prove (F4) ∧ (Q)⇔ (41) ∧ (42). We chose the presentation in
terms of axioms (F4) and (Q) because the former is a principle one uses continually
when reasoning with freshness in this setting and the latter makes it clear that we
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remain within the realm of first order logic when we use the N-quantifier in Nominal
Logic.

Properties (41) and (42) suggest how to formulate introduction and elimination
rules for the N-quantifier within a natural deduction formulation of Nominal Logic:

Φ, a# ~x ` ϕ
Φ ` ( Na : A)ϕ

( N-intro)

Φ ` ( Na : A)ϕ Φ, a# ~x, ϕ ` ψ
Φ ` ψ ( N-elim)

where fv(Φ) ⊆ ~x and fv(ϕ) ⊆ a, ~x. Similarly, they suggest how to formulate right
and left rules for the quantifier in a sequent calculus formulation:

Φ, a# ~x ` ϕ,Ψ
Φ ` ( Na : A)ϕ,Ψ

( N-right)

Φ, a# ~x, ϕ ` Ψ

Φ, ( Na : A)ϕ ` Ψ
( N-left)

where fv(Φ,Ψ) ⊆ ~x and fv(ϕ) ⊆ a, ~x. The proof theoretical properties of these
formulations have yet to be explored. (However, see [4] for a sequent calculus
admitting cut-elimination for a modal process logic involving the N-quantifier, in
which freshness predicates like a # x appear as side-conditions rather than as for-
mulas in sequents.)

7. BINDING

In this section we extend the Nominal Logic we have considered so far to deal
with variable-binding operations in a more uniform way. To motivate this, consider
Example 3 once again, where the fact that lam is a variable-binding operation is
captured by axiom (15). Instead of axiomatising the properties of such binders
on a theory-by-theory basis, we endow the underlying logic, Nominal Logic, with
sort- and term-forming operations for atom-abstraction, together with appropriate
axioms. This is analogous to enriching our term language with lambda-abstraction
and application in order to use functionals to represent binding operations à la
higher-order abstract syntax [32]. However, an interesting difference here is that we
are able to keep within first-order logic: atom-abstractions are merely a definitional
extension within first-order logic of what we have considered so far (see Remark 4
below).

Definition 4 (Atom-abstraction). Extend the syntax of sorts by adding a sort-
forming operation that takes a sort of atoms A and a sort S and produces a new
sort [A]S, called the sort of A-atom-abstractions of elements of sort S. Extend the
syntax of terms with a new operation that takes terms t1 : A, t2 : S and produces a
term t1.t2 : [A]S. The properties of these new terms are described by the following
axiom schemes.

(∀b, b′ : A′)(∀a : A)(∀x : S) (b b′) · (a.x) = ((b b′) · a).((b b′) · x) (E5)

(∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔
(a = a′ ∧ x = x′) ∨ (a′ # x ∧ x′ = (a a′) · x) (A1)

(∀y : [A]S)(∃a : A)(∃x : S) y = a.x (A2)
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Axiom (E5) ensures that the equivariance properties of Proposition 2 (and
hence also the freshness property of Proposition 3) continue to hold for the ex-
tended syntax. Axiom (A2) just tells us that everything of atom-abstraction sort
is an atom-abstraction. The crucial axiom is (A1), which captures an essence of
α-equivalence in terms of Nominal Logic’s primitives of atom-swapping and fresh-
ness. Shouldn’t we have added axioms that explain when an atom is fresh for an
atom-abstraction, to complement axioms (F1)–(F4)? In fact the following propo-
sition shows that the freshness properties of atom-abstractions we expect from [17,
Section 5] turn out to be derivable without further axioms. Thus with these addi-
tions we have completed the definition of Nominal Logic, which is summarised in
Appendix A.

Proposition 5. The following formulas are provable in Nominal Logic

(∀a, a′ : A)(∀x : S) a′ # a.x ⇔ (a′ = a ∨ a′ # x) (43)

(∀a : A)(∀a′ : A′)(∀x : S) a′ # a.x ⇔ a′ # x (44)

where in the second formula A and A′ are distinct sorts of atoms.

Proof. In view of axioms (F2) and (F3), it suffices to prove

(∀a : A)(∀x : S) a# a.x (45)

(∀a : A)(∀a′ : A′)(∀x : S) a′ # x ⇒ a′ # a.x (46)

(∀a : A)(∀a′ : A′)(∀x : S) a′ # a ∧ a′ # a.x ⇒ a′ # x (47)

for all sorts of atoms A and A′ (possibly equal).
For (45), given a : A and x : S, by axiom (F4) we can find a′ : A with a′ # a.x

and hence

a = (a a′) · a′ by axioms (S2) and (S3)

# (a a′) · (a.x) by axiom (E2) on a′ # a.x

= a′.((a a′) · x) by axioms (E5) and (S3)

= a.x by axiom (A1).

For (46), given a : A, a′ : A′ and x : S with a′# x, we argue by cases according
to whether A and A′ are the same and whether a′ = a or not. If the sorts are the
same and a′ = a, then we have a′# a.x by (45); in the other three cases we always
have a′ # a (using axioms (F2) and (F3)); so since a′ # a and a′ # x, we have
a′ # a.x by Proposition 3 (which holds for the extended syntax by virtue of axiom
(E5)).

For (47), given a : A, a′ : A′ and x : S with a′ # a and a′ # a.x, by axiom (F4)
we can find a′′ : A′ with a′′ # a, a′′ # x and a′′ # a.x. Then

a.x = (a′ a′′) · a.x by axiom (F1)

= ((a′ a′′) · a).(a′ a′′) · x) by axiom (E5)

= a.((a′ a′′) · x) by axiom (F1)

and hence x = (a′ a′′) · x by axiom (A1). Since a′′ # x, we get a′ = (a′ a′′) · a′′ #
(a′ a′′) · x = x, as required.

The intended interpretation of atom-abstraction is given by the following con-
struction on nominal sets.
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Definition 5 (Nominal set of atom-abstractions). Given a nominal set X and
a nominal set of atoms An (cf. Definition 2), the nominal set of atom-abstractions
[An]X is defined as follows.

Underlying set |[An]X| is the set of equivalence classes for the equivalence rela-
tion on An × |X| that relates (a, x) and (a′, x′) if and only if (a a′′) ·X x =
(a′ a′′) ·X x′ for some (or indeed any) a′′ ∈ An such that a′′ /∈ suppX(x) ∪
suppX(x′) ∪ {a, a′}. We write a.x for the equivalence class of the pair (a, x).

Swapping action is inherited from that for the product An ×X:

(b b′) ·[An]X (a.x) , a′.x′ where a′ = (b b′)a and x′ = (b b′) ·X x.

With these definitions one can check that the requirements of Definition 1 are
satisfied; in particular the support of a.x turns out to be the finite set suppX(x)−{a}
(cf. Proposition 5).

Thus if a sort of atoms A gets interpreted as a nominal set of atoms [[A]] and
a sort S gets interpreted as a nominal set [[S]], then the sort [A]S is interpreted
as the nominal set of atom-abstractions [[[A]]][[S]]. Similarly if t1 : A and t2 : S,
then [[t1.t2]] = [[t1]].[[t2]] ∈ [[[A]]][[S]]. With these definitions, the soundness result
of Theorem 1 continues to hold. To prove this one needs the following, more
symmetric characterisation in Nominal Logic of equality of atom-abstractions; it
matches the definition of the equivalence relation used to define |[An]X| from An×
|X| in Definition 5 (see also the definition of ∼α in Example 1).

Proposition 6. If A is a sort of atoms and S is any sort, then the following
formula is provable in Nominal Logic.

(∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔ ( Na′′ : A) (a a′′) · x = (a′ a′′) · x′ (48)

Proof. First suppose a.x = a′.x′ holds. By axiom (Q), to prove ( Na′′ : A) (a a′′)·
x = (a′ a′′) ·x′ we have to find some a′′#a, a′, x, x′ such that (a a′′) ·x = (a′ a′′) ·x′.
By axiom (F4), we can certainly find a′′ satisfying a′′#a, a′, x, x′. If in addition we
have a = a′, then by axiom (A1) we also have x = x′ and we are done. So suppose
a 6= a′, in which case by axiom (A1) we also have a′ # x and x′ = (a a′) · x. Hence

(a′ a′′) · x′ = (a′ a′′) · (a a′) · x
= ((a′ a′′) · a (a′ a′′) · a′) · (a′ a′′) · x by axiom (E1)

= (a a′′) · (a′ a′′) · x by Proposition 1

= (a a′′) · x by axiom (F1)

as required.
Conversely, if ( Na′′ : A) (a a′′) · x = (a′ a′′) · x′ does hold, then by axiom (Q)

there is some a′′ with a′′ # a, a′, x, x′ and

(a a′′) · x = (a′ a′′) · x′ (49)

If a = a′, then applying (a a′′) · (−) to both sides of (49), by axiom (S2) we get

x = (a a′′) · (a a′′) · x = (a a′′) · (a a′′) · x′ = x′
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and hence a.x = a′.x′. So suppose a 6= a′. Applying (a′ a′′) · (−) to a′′ # x′, by
axioms (E2) and (S3) we get a′# (a′ a′′) · x′ and hence by (49) that a′# (a a′′) · x.
Hence

a′ = (a a′′) · a′ by Proposition 1

# (a a′′) · (a a′′) · x by axiom (E2)

= x by axiom (S2).

and then also

x′ = (a′ a′′) · (a′ a′′) · x′ by axiom (S2)

= (a′ a′′) · (a a′′) · x by (49)

= ((a′ a′′) · a (a′ a′′) · a′′) · (a′ a′′) · x by axiom (E1)

= (a a′) · (a′ a′′) · x by Proposition 1

= (a a′) · x by axiom (F1).

Thus a.x = a′.x′ by axiom (Q).

The construction in Definition 5 is used in [17, 13] to treat, within the Fraenkel-
Mostowski permutation model of set theory, sets of parse trees modulo α-equivalence
as inductively defined sets with useful associated structural induction/recursion
principles. For example, [17, Theorem 6.2] shows that the set of α-equivalence
classes of λ-terms (Example 1) has an inductive characterisation as the least nom-
inal set satisfying

X = A+ (X ×X) + [A]X (50)

(where A is a nominal set of atoms, + indicates disjoint union and × cartesian
product). From this we can derive a theory in Nominal Logic for λ-terms modulo
α-equivalence, in much the same way as the inductive description of the natural
numbers (namely, the least set X such that X = 1+X) can lead to Peano’s axioms
for arithmetic.

Example 6 (Nominal theory of λ-terms modulo α-equivalence). The signature
of this theory has a sort of atoms Var , a sort of data Term, function symbols

var : Var −→ Term
app : Term,Term −→ Term
lam : [Var ]Term −→ Term

and the following axioms.

(∀a : Var)(∀t, t′ : Term) ¬ var(a) = app(t, t′) (51)

(∀a : Var)(∀s : [Var ]Term) ¬ var(a) = lam(s) (52)

(∀s : [Var ]Term)(∀t, t′ : Term) ¬ lam(s) = app(t, t′) (53)

(∀t : Term) (∃a : Var) t = var(a)
∨ (∃t′, t′′ : Term) t = app(t′, t′′)
∨ (∃s : [Var ]Term) t = lam(s)

(54)

(∀a, a′ : Var) var(a) = var(a′)⇒ a = a′ (55)

(∀t, t′, t′′, t′′′ : Term) app(t, t′) = app(t′′, t′′′)⇒ t = t′′ ∧ t′ = t′′′ (56)
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(∀s, s′ : [Var ]Term) lam(s) = lam(s′)⇒ s = s′ (57)

(∀~x : ~S) (∀a : Var) ϕ(var(a), ~x)
∧ (∀t, t′ : Term) ϕ(t, ~x) ∧ ϕ(t′, ~x)⇒ ϕ(app(t, t′), ~x)
∧ ( Na : Var)(∀t : Term) ϕ(t, ~x)⇒ ϕ(lam(a.t), ~x)
⇒ (∀t : Term) ϕ(t, ~x)

(58)

Axioms (51)-(57) just state that there is a bijection (induced by var , app and lam)
between Term and the disjoint union of Var , Term × Term and [Var ]Term. The
interesting axiom is the last one, (58). It is an induction principle reflecting the
initiality of (50) (cf. [17, Theorem 6.8]), much as Peano’s induction axiom reflects
the initiality of the set of natural numbers.

To illustrate the use of axiom (58) consider adding to the theory a relation
symbol Subst or arity Term,Var ,Term,Term and the following axiom.

Subst(t, a, t′, t′′)⇔
t′ = var(a) ∧ t′′ = t

∨ (∃a′ : Var) t′ = var(a′) ∧ ¬a′ = a ∧ t′′ = var(a′)
∨ (∃t′1, t′′1 , t′2, t′′2 : Term) t′ = app(t′1, t

′
2) ∧ t′′ = app(t′′1 , t

′′
2) ∧

Subst(t, a, t′1, t
′′
1) ∧ Subst(t, a, t′2, t

′′
2)

∨ (∃a′ : Var)(∃t′1, t′′1 : Term) t′ = lam(a′.t′1) ∧ t′′ = lam(a′.t′′1)∧
a′ # t ∧ Subst(t, a, t′1, t

′′
1)

(59)

The intention is that Subst is the graph of the capture-avoiding substitution func-
tion. The reason for formulating this with a relation symbol rather than a function
symbol (as we did in Example 3) is to allow us to state that Subst is indeed the
graph of a total function

(∀t, t′ : Term)(∀a : Var)(∃!t′′ : Term) Subst(t, a, t′, t′′) (60)

even though axiom (59) only specifies the result of substitution under a λ-binder
when the bound variable a′ is sufficiently fresh (i.e. when a′ # t holds). In-
deed, in the presence of the other axioms, (60) follows by applying the struc-
tural induction principle (58) to prove (∀t′ : Term)ϕ(t′, t, a) where ϕ(t′, t, a) is
(∃!t′′ : Term) Subst(t, a, t′, t′′). We omit the details.

Remark 4 (Definability of atom-abstraction). Atom-abstraction sorts are con-
venient for expressing properties of binding operations, but they do not represent
an essential extension of the version of Nominal Logic we presented in Section 5.
The situation is analogous to the one for cartesian products, which are definable
within ordinary first-order logic: given sorts S1, S2 and S, there is a first-order
theory in all of whose models the interpretation of S is isomorphic to the cartesian
product of the interpretations of S1 and S2. Indeed there are several such theories;
for example, take a function symbol pair : S1, S2 −→ S and axioms

(∀x1, x
′
1 : S1) (∀x2, x

′
2 : S2) pair(x1, x2) = pair(x′1, x

′
2)⇒

(x1 = x′1) ∧ (x2 = x′2)
(61)

(∀x : S)(∃x1 : S1)(∃x2 : S2) x = pair(x1, x2) (62)

Within Nominal Logic there is a similar definability result for atom-abstraction
sorts. Given sorts A, S and S′ (with A a sort of atoms), and a function symbol
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abs : A,S −→ S′, the axioms

(∀a, a′ : A) (∀x, x′ : S) abs(a, x) = abs(a′, x′)⇔
( Na′′ : A) (a a′′) · x = (a′ a′′) · x′

(63)

(∀x′ : S′)(∃a : A)(∃x : S) x′ = abs(a, x) (64)

ensure that in the semantics of Section 3, the interpretation of S ′ is isomorphic to
[An]X, where An and X are the nominal sets interpreting A and S respectively.

The following result shows that atom-abstraction sorts [A]X have a dual nature:
their elements a.x embody not only the notion of abstraction as a ‘(bound variable,
body)-pair modulo renaming the bound variable’, but also the notion of abstraction
as a function (albeit a partial one) from atoms to individuals (cf. Section 9).

Proposition 7. The following formula is provable in Nominal Logic.

(∀y : [A]S)(∀a : A) a# y ⇒ (∃!x : S) y = a.x (65)

(where ∃! means ‘there exists a unique . . . ’ and has the usual encoding in first-order
logic).

Proof. The uniqueness part of (65) follows from

(∀a : A)(∀x, x′ : S) a.x = a.x′ ⇒ x = x′

which is a corollary of axioms (A1) and (S1). For the existence part of (65), note
that by Proposition 4

(∀y : [A]S)(∀a : A) a# y ⇒ (∃x : S) y = a.x

holds if and only if

(∀y : [A]S)(∃a : A) a# y ∧ (∃x : S) y = a.x

and the latter follows from axiom (A2) and Proposition 5 (specifically, prop-
erty (45)).

8. CHOICE

In informal arguments about syntax one often says things like ‘choose a fresh
name such that . . . ’. Axiom (F4) ensures that we can comply with such directives
for Nominal Logic’s formalisation of freshness. But it is important to note that in
nominal Logic such choices cannot be made uniformly in the parameters: it is in
general inconsistent with the other axioms to skolemize (F4) by adding function

symbols fresh : ~S −→ A satisfying (∀~x : ~S) fresh(~x) # ~x. Here is the simplest
possible example of this phenomenon.

Proposition 8. Suppose A is a sort of atoms. The formula

(∀a : A)(∃a′ : A) ¬ a = a′ (66)

is a theorem of Nominal Logic. However, it is inconsistent to assume there is a
function that, for each atom, picks out an atom different from it. In other words,
the Nominal Logic theory with a function symbol f : A −→ A and the axiom

(∀a : A) ¬ a = f(a) (67)

is inconsistent.
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Proof. The formula (66) is an immediate consequence of axioms (F2) and (F4).
For the second part we show that (∃a : A) a = f(a) is a theorem. First note that
by axiom (F4) (with the empty list of parameters ~x), there is an atom a of sort A.4

We show that a = f(a). For any a′ : A, by Proposition 3 we have a′#a⇒ a′#f(a),
i.e. (by axiom (F2)) ¬ a′ = a⇒ ¬ a′ = f(a), i.e. a′ = f(a)⇒ a′ = a. Taking a′ to
be f(a), we get f(a) = a.

This phenomenon is a reflection of the fact that the category Nom of nominal
sets fails to satisfy the Axiom of Choice (see [12] for a categorical treatment of
choice), which in turn reflects the fact that, by design, the Axiom of Choice fails
to hold in the Fraenkel-Mostowski permutation model of set theory [25]. However,
there is no problem with principles of unique choice (in contrast to the situation
for the Theory of Contexts [23], a close cousin of Nominal Logic). For example, if
a Nominal Logic theory has a model in Nom satisfying the sentence

(∀~x : ~S)(∃!x′ : S′) ϕ(~x, x′) (68)

then the theory extended by a function symbol f : ~S −→ S′ and axiom

(∀~x : ~S) ϕ(~x, f(~x)) (69)

can also be modelled in Nom (simply because in a cartesian category any subob-
ject satisfying the properties of a single-valued and total relation is the graph of
some morphism). Unfortunately a far more common situation than (68) is to have
‘conditional unique existence’:

(∀~x : ~S) δ(~x)⇒ (∃!x′ : S′) ϕ(~x, x′) (70)

so that ϕ(~x, x′) is the graph of a partial function with domain of definition contain-
ing those ~x such that δ(~x). We have already seen an example of this in Proposition 7.
If the formula (70) is a theorem of a Nominal Logic theory, adding a function symbol

f : ~S −→ S′ and axiom
(∀~x : ~S) δ(~x)⇒ ϕ(~x, f(~x)) (71)

to the theory can result in inconsistency. This is because f represents a total
function from ~S to S′. Given terms ~t : ~S, even if δ(~t) does not hold and so (71)
cannot be used to deduce properties of the term f(~t) : S′, nevertheless one may
be able to use results such as Proposition 3 to deduce properties of f(~t) : S′ that
lead to inconsistency, especially if S ′ happens to be a sort of atoms. The simplest
possible example of this phenomenon is when ~S is the empty list of sorts and δ is
false. In this case formula (70) is trivially a theorem; the skolemizing function f is a
constant of sort S′, so if that is a sort of atoms we get inconsistency by Corollary 1.

This difficulty with introducing notations for possibly partially defined expres-
sions is masked in [16] by the untyped nature of FM-set theory.5 That work intro-
duces, among other things, a term-former for concretion of atom-abstractions at
atoms, skolemizing the conditional unique existence formula (65) of Proposition 7.

4The reader can deduce at this point that the author, being of a category-theoretic bent, is
not assuming a formulation of first-order logic that entails that all sorts are non-empty. Possibly
empty sorts, like the empty set, have their uses!

5It is also masked in the programming language FreshML sketched in [35], which has a richer
term language than does Nominal Logic; this is because FreshML features unrestricted fixed
point recursion in order to be Turing powerful, and hence naturally contains partially defined
expressions.
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Terms involving concretion only have a definite meaning when certain precondi-
tions are met. Nevertheless they can be given a semantics as total elements of the
universe of FM-sets simply by taking their meaning when the preconditions are not
met to be some default element with empty support (the empty set, say). Such
a ‘hack’ is available to us in classical logic when there are enough terms of empty
support. One such term is enough in an untyped setting such as FM-set theory. In
a many-sorted Nominal Logic theory there is nothing to guarantee that a sort S
possesses a term t : S of empty support (i.e. satisfying (∀a : A) a# t for all sorts of
atoms A); indeed Corollary 1 shows that sorts of atoms do not possess such terms in
a consistent theory. To provide Nominal Logic with a richer term language, incor-
porating such things as concretions of atom-abstractions at atoms and maybe more
besides (such as locally fresh atoms—see [17, Lemma 6.3] et seq), one may be able
to adapt the work of Miller [30, Section 6] on a sound treatment of skolemization
in higher order logic without choice (see also [10, Section 7]). One might also con-
sider merging Nominal Logic’s novel treatment of atoms and freshness with some
conventional treatment of the logic of partial expressions (such as [2, Section VI.1]
or [37]). We leave such considerations to the future and turn instead to a brief
survey of existing work more directly related to the concerns of this paper.

9. RELATED WORK

One can classify work on fully formal treatments of names and binding according
to the mathematical construct used to model the notion of abstraction:

• Abstractions as (name, term)-pairs. Here one tries to work directly with
parse trees and the relation of α-equivalence between them; [28] and [38]
are examples of work in this spirit. The drawback of this approach is not
so much that many tedious details left implicit by informal practice become
explicit, but rather that many of these details have to be revisited on a case-
by-case basis for each object language. The use of parse trees containing
de Bruijn indices [7] is more elegant; but this has its own complications and
also side-steps the issue of formalising informal practice to do with named
bound variables.

• Abstractions as functions from terms to terms. The desire to take care of the
tedious details of α-equivalence and substitution once and for all at the meta-
level leads naturally to encodings of object-level syntax in a typed λ-calculus
modulo α, β (and η) equivalence. This is the approach of higher-order abstract
syntax (HOAS) [32], an idea dating back to Church and then Martin-Löf. It
is well-supported by existing systems for machine-assisted reasoning based on
typed λ-calculus. It does not lend itself very easily to principles of structural
recursion and induction for the encoded object-language, but nevertheless
such principles have been developed. For example, McDowell and Miller have
developed a way of using Hallnäs’ notion of partial inductive definitions [20]
to enable inductive reasoning about HOAS specifications in an intuitionistic
higher-order logic [27]; and Despeyroux, Pfenning and Schürmann have de-
veloped a modal typed λ-calculus that allows primitive recursive functions on
HOAS-encoded object-language syntax without destroying the adequacy of
the encoding [8, 36].

• Abstractions as functions from names to terms. The Theory of Contexts
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[23] reconciles the elegance of higher-order abstract syntax with the desire
to deal with names at the object-level and have relatively simple forms of
structural recursion/induction. It does so by axiomatising a suitable type of
names within classical higher order logic. The Theory of Contexts involves
a ‘non-occurrence’ predicate and axioms quite similar to those for freshness
in FM-set theory [17] and in the Nominal Logic presented here. However,
‘non-occurrence’ in [23] is dependent upon the object language, whereas our
notion of freshness is a purely logical property, independent of any particular
object syntax with binders. (The same remark applies to the axiomatisation
of α-equivalence of λ-terms in higher order logic in [18]; and to the extension
of first-order logic with binders studied in [9].) Furthermore, the use of total
functions on names to model abstraction means that the Theory of Contexts
is incompatible with the Axiom of Unique Choice (cf. Section 8), forcing the
theory to have a relational rather than functional feel: see [29]. On the other
hand, the Theory of Contexts is able to take advantage of existing machine-
assisted infrastructure (namely Coq [6]) quite easily, whereas Gabbay had
to work hard to adapt the Isabelle [31] set theory package to produce his
Isabelle/FM-sets package: see [13, Chapter III] and [15].

The notion of abstraction that is definable within Nominal Logic (see Section 7)
captures something of the first and third approaches mentioned above: atom-
abstractions are defined to be pairs in which the name-component has been made
anonymous via swapping; but we saw in Proposition 7 that atom-abstractions also
behave like functions, albeit partial ones. Whatever the pros and cons of the vari-
ous views of name abstraction, at least one can say that, being first-order, Nominal
Logic gives a more elementary explanation of names and binding than much the
work mentioned above; and a more fundamental one, I would claim, because of the
independence of the notions of atoms, swapping, freshness and atom-abstraction
from any particular object-level syntax involving binders.

10. CONCLUSION

Nominal Logic gives a first-order axiomatisation of some of the key concepts of
FM-set theory—atoms, swapping and freshness—which were used in [17] to model
syntax modulo α-equivalence with inductively defined sets whose structural induc-
tion/recursion properties remain close to informal practice. We have seen that,
being first-order, Nominal Logic does not give a complete axiomatisation of the
notion of finite support that underlies the notion of freshness in FM-sets. Never-
theless, the first-order properties of a notion of freshness of names presented in
this paper seem sufficient to develop a useful theory, independent of any partic-
ular object-level language involving binders. Indeed, many of the axioms listed
in Appendix A arose naturally in Gabbay’s implementation of FM-set theory in
the Isabelle system [13, 15] as the practically useful properties of finite support.
Nominal Logic and the theories we can formulate in it, are a vehicle for exhibiting
those properties clearly. They are also a necessary precursor for the study of the
computational properties of the logic of freshness: work is in progress on a version
of first-order logic programming extended with Nominal Logic’s primitives of swap-
ping and freshness of atoms (cf. Hamana’s logic programming language [21] based
on the presheaf semantics of binding in [11]).

However, if one wants a single, expressive foundational theory in which to de-
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velop the mathematics of syntax in the style of this paper, one can use FM-set
theory (and its automated support within Isabelle); or, as Gabbay argues in [14],
a version of higher-order logic incorporating atoms, swapping and freshness.

Finally, even if one does not care about the details of Nominal Logic, I think
that two simple, but important ideas underlying it are worth taking on board for
the practice of operational semantics (be it with pencil-and-paper, or with machine
assistance):

• Name-swapping (a b) · (−) has much more convenient logical properties than
renaming [b/a](−).

• The only assertions about syntax we should deal with are ones whose validity
is invariant under swapping bindable names.

Even if one only takes the näıve view of abstractions as (name, term)-pairs, it
seems useful to define α-equivalence and capture-avoiding substitution in terms of
name-swapping and to take account of equivariance in inductive arguments. We
gave some illustrations of this in Section 2. A further example is provided by the
work of Caires and Cardelli on modal logic for the spatial structure of concurrent
systems [3, 4]; this and the related work [5] make use of the freshness quantifier
of Section 6. See also [22] for the use of permutative renaming to treat naming
aspects of process calculi.

APPENDIX A: SYNTAX AND AXIOMS OF NOMINAL LOGIC

A.1. Signatures and Sorts

A nominal logic signature is specified by the following data.

• A collection of ground sort symbols, partitioned into two kinds: sorts of atoms
and sorts of data.

• A collection of function symbols, each equipped with an arity consisting of a
list of argument sorts and a result sort (where the sorts over the signature are

defined below); we write f : ~S −→ S to indicate that function symbol f has

argument sorts given by the list ~S and result sort S.

• A collection of relation symbols, each equipped with an arity consisting of a
list of argument sorts; we write R < : ~S to indicate that relation symbol R
has argument sorts given by the list ~S.

The sorts over a signature are built up by forming atom-abstraction sorts from
the ground sort symbols:

Sorts S ::= A sorts of atoms

D sorts of data

[A]S sorts of atom-abstractions.
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A.2. Terms and Formulas

Given a nominal logic signature, we fix mutually disjoint, countably infinite sets
of variable symbols of each sort over the signature.

The terms over the signature are inductively defined as follows. Each well-
formed term has a unique sort; we write t : S to indicate that t is a term of sort
S.

• x : S, if x is a variable symbol of sort S.

• f(t1, . . . , tn) : S, if f : S1, . . . , Sn −→ S and t1 : S1, . . . , tn : Sn.

• (t1 t2) · t3 : S, if t1 : A, t2 : A and t3 : S, with A a sort of atoms and S any
sort.

• t1.t2 : [A]S, if t1 : A and t2 : S, with A a sort of atoms.

The formulas over the signature are inductively defined as follows.

• R(t1, . . . , tn) is a formula, if R < : S1, . . . , Sn and t1 : S1, . . . , tn : Sn.

• t1 = t2 is a formula, if t1 : S and t2 : S for some sort S.

• t1 # t2 is a formula, if t1 : A for some sort of atoms A and t2 : S for some sort
S.

• ¬ϕ, φ ∧ ψ, φ ∨ ψ, φ⇒ ψ and φ⇔ ψ are formulas, if ϕ and ψ are.

• (∀x : S)ϕ and (∃x : S)ϕ are formulas, if ϕ is a formula, where S is any sort
and x is a variable symbol of sort S.

• ( Nx : A)ϕ is a formula, if ϕ is a formula, where A is any sort of atoms and x
is a variable symbol of sort A.

Like ∀ and ∃, the freshness quantifier Nis a binder—the free variables of ( Nx : A)ϕ
are all the free variables of ϕ except x.

A.3. Axioms

A nominal logic theory consists of a signature and a collection of formulas over
the signature, called the (non-logical) axioms of the theory. The theorems of the
theory are all the formulas derivable using the rule of Modus Ponens from the usual
axioms of first-order logic with equality augmented by the following axioms specific
to nominal logic. In what follows, A and A′ range over sorts of atoms, S ranges
over arbitrary sorts, and ~S over lists of sorts.

Properties of swapping

(∀a : A)(∀x : S) (a a) · x = x (S1)

(∀a, a′ : A)(∀x : S) (a a′) · (a a′) · x = x (S2)

(∀a, a′ : A) (a a′) · a = a′ (S3)
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Equivariance

(∀a, a′ : A)(∀b, b′ : A′)(∀x : S) (a a′) · (b b′) ·x = ((a a′) · b (a a′) · b′) · (a a′) ·x (E1)

(∀a, a′ : A)(∀b : A′)(∀x : S) b# x⇒ (a a′) · b# (a a′) · x (E2)

(∀a, a′ : A)(∀~x : ~S) (a a′) · f(~x) = f((a a′) · ~x) (E3)

where f is a function symbol of arity ~S −→ S and (a a′) · ~x indicates the finite list
of arguments given by (a a′) · xi as xi ranges over ~x.

(∀a, a′ : A)(∀~x : ~S) R(~x)⇒ R((a a′) · ~x) (E4)

where R is a relation symbol of arity ~S.

(∀b, b′ : A′)(∀a : A)(∀x : S) (b b′) · (a.x) = ((b b′) · a).((b b′) · x) (E5)

Properties of freshness

(∀a, a′ : A)(∀x : S) a# x ∧ a′ # x⇒ (a a′) · x = x (F1)

(∀a, a′ : A) a# a′ ⇔ ¬a = a′ (F2)

(∀a : A)(∀a′ : A′) a# a′ (F3)

where A and A′ are different sorts of atoms.

(∀~x : ~S)(∃a : A) a# ~x (F4)

where a#~x indicates the finite conjunction of the formulas a#xi as xi ranges over
the list ~x.

Definition of N

(( Na : A)ϕ)⇔ (∃a : A)a# ~x ∧ ϕ (Q)

where a, ~x is a list of distinct variables containing the free variables of ϕ.

Properties of atom-abstraction

(∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔
(a = a′ ∧ x = x′) ∨ (a′ # x ∧ x′ = (a a′) · x) (A1)

(∀y : [A]S)(∃a : A)(∃x : S) y = a.x (A2)
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