
On a Monadic Semantics for Freshness

Mark R. Shinwell Andrew M. Pitts

University of Cambridge Computer Laboratory, Cambridge, CB3 0FD, UK

Abstract

A standard monad of continuations, when constructed with domains in the world of
FM-sets [3], is shown to provide a model of dynamic allocation of fresh names that is
both simple and useful. In particular, it is used to give the first correct proof of the
fact that the powerful facilities for manipulating fresh names and binding operations
provided by the ‘Fresh’ series of metalanguages [13–15] respect α-equivalence of
object-level languages up to meta-level contextual equivalence.

1 Introduction

Moggi’s use of category-theoretic monads to structure various notions of com-
putational effect [6] is by now a standard technique in denotational semantics;
and thanks to the work of Wadler [18] and others, monads are the accepted
way of “tackling the awkward squad” [7] of side-effects within pure functional
programming. Of Moggi’s examples of monads, those for modelling dynamic
allocation of fresh resources 1 are not so well-known. 2 So let us recall a sim-
ple example of such a monad, T . It is defined on the category of Set-valued
functors from the category I of finite cardinals and injective functions. Thus
an object A of this functor-category gives us a family of sets A(n) of “values
in world n”, where n is the number of names dynamically created so far; and
each injection of n into a larger “world” n′ gives rise to a coercion from A(n) to
A(n′). Then the monad T builds from A an object TA of “computations of A-

values” whose value at each n is the dependent sum TA(n)
def
= Σm∈IA(n+m).

Such computations simply create some number m of fresh names and then
return an A-value in the appropriate world, n + m. When A is the object
of names itself, given by A(n) = n, there is a distinguished global element
new : 1 −→ TA (given by the element (1, 0) of the set TA(0) = Σm∈Im)
representing the computation whose evaluation creates a name that is fresh
with respect to the current world.

1 In this paper the only type of resource we consider are freshly generated names.
2 Dynamic allocation monads are not mentioned in [6], but do appear in [5, Sect. 4.1.4].

Although an attractive notion that has had nice applications (see [16], for ex-
ample), such dynamic allocation monads on functor-categories have proved at
best difficult and at worst impossible to combine with some other important
denotational techniques—for modelling higher-order functions, fixpoint defi-
nitions and algebraic identities. The difficulty with higher-order functions is
that whilst functor-categories have exponentials, they are not so easy to work
with in practice. The difficulty with fixpoints is finding a workable notion of
“domain” in functor-categories (out of the several possibilities that present
themselves). The difficulty with algebraic identities, such as

(let x⇐ new in e) = e, if x not free in e
(let x⇐ new; x′ ⇐ new in e) = (let x′ ⇐ new; x⇐ new in e)

(1)

is that quotienting dynamic allocation monads in order to force such identi-
ties interacts badly with order-theoretic completeness properties needed for
fixpoints. 3 We get past these problems with higher-order functions, fixpoints
and algebraic identities in two steps, both of which turn out to hugely simplify
matters.

First, we replace use of functor-categories with the category of FM-sets [3]. 4

Although this is equivalent to a category of functors, 5 working with it is
almost entirely like working in the familiar category of sets: in particular ex-
ponentials are straightforward, as is the theory of domains in FM-sets [15,11].
The key property of FM-sets is that their elements have a notion of finite sup-
port that provides a syntax-free notion of “set of free names”: it enables us to
make implicit all dependencies upon parameterising names—a huge simplifica-
tion compared with the explicit passing of parameterising name sets inherent
in the functor-category approach.

Secondly, we feed back into denotational semantics the operational insight of
[12] that in the presence of fixpoint recursion, it is easier to validate contex-
tual equivalences like (1) (and many other more subtle ones) by forgetting
about evaluation’s properties of intermediate name-creation in favour of its
simple termination properties. This leads to use of a Felleisen-style opera-
tional semantics with frame-stacks (evaluation contexts): see [9] for a survey.
If D is the domain of denotations of values of some type, then frame-stacks
can be modelled simply by elements of the strict function space D (1⊥
where 1⊥ = {⊥,>} (one element for non-termination, the other for termina-
tion); and since expressions are identified if they have the same termination
behaviour with respect to all frame-stacks, we can take (D (1⊥) (1⊥ as
the domain for interpreting expressions. Thus we are led to the use of the

3 Similar problems arise in connection with powerdomains.
4 Also known as nominal sets in [10].
5 The ones from I to Set that preserve pullbacks.

simple continuation monad

(−)⊥⊥
def
= (−(1⊥)(1⊥. (2)

The notion of “finite support” now enters the picture: the domain A of names
is simply a flat domain

�
⊥ on the FM-set

�
of atoms. We get an element

new ∈ (
�
⊥(1⊥)(1⊥ that models dynamic allocation by defining new to

send any σ ∈ �
⊥ (1⊥ to σ(a) ∈ 1⊥, where a ∈ �

is some (or indeed, any)
atom not in the support of the function σ. Not only do standard properties
of support make this recipe well defined, 6 but new turns out to have good
properties, such as (1).

It might seem that the continuation monad (−(1⊥)(1⊥ on FM-domains
is too simple to be useful. We show this is not so by using it, together with
some standard methods based on logical relations for relating semantics to syn-
tax [8], to prove some extensionality properties of contextual equivalence for
the ‘Fresh’ series of metalanguages [13–15]. In particular we give the first cor-
rect proof of the main technical result of [15], 7 which shows that FreshML’s
powerful facilities for manipulating fresh names and binding operations do
indeed respect α-equivalence of object-level languages up to meta-level con-
textual equivalence.

2 Mini-FreshML

We present a small language Mini-FreshML that encapsulates the core fresh-
ness features of FreshML [15] and Fresh O’Caml [13]; the reader is referred to
those papers for motivation of the novel language features for manipulating
bindable names (expressions of type name) and name-abstractions (expressions
of type <<name>>τ). Mini-FreshML types τ are given by the following gram-
mar: τ ::= unit | name | δ | τ × τ | <<name>>τ | τ→ τ . Each data type δ has a
top-level type declaration of the form δ = C1 of σ1 | · · · | CCmax of σCmax ,
where the constructor types σk are generated from the same grammar as types
τ and in particular may involve recursive occurrences of δ. Mini-FreshML ex-
pressions e are given by the following grammar, where x ranges over value
identifiers, a over the denumerable set

�
of atoms 8 and 1 6 k 6 Cmax .

e ::=
x | a | Ck(e) | (e, e) | fresh | <<e>>e | swap e, e in e | fun x(x) = e |
e e | let x = e in e | let (x, x) = e in e | let <<x>>x = e in e |
match e with C1(x) -> e| · · · | CCmax(x) -> e.

6 new is closely related to the “freshness quantifier” Nintroduced in [3].
7 In [15] the authors attempted to use a direct- rather than continuation-based monadic semantics that
turns out to have problematic order-theoretic completeness properties.
8 They are the closed values of type name.

The canonical forms (‘values’) of Mini-FreshML, v, form the subset of expres-
sions generated by: v ::= x | a | Ck(v) | (v, v) | <<a>>v | fun x(x) = e. We
identify expressions up to α-conversion of bound value identifiers; the bind-
ing forms are as follows (with binding positions underlined): fun x(x′) = [–],
let x = e in [–], let (x, x′) = e in [–], let <<x>>x′ = e in [–],
match e with · · · | Ck(x) -> [–] | · · · . Note that an abstraction expres-
sion <<e>>e′ is not a binding form in this sense. 9 In typing contexts Γ (finite
maps from value identifiers to types), expressions e are assigned types τ by
a typing relation: we write Γ ` e : τ iff (Γ, e, τ) is in this relation (the Γ is
omitted if it is empty). The details of the definition are all quite standard and
we omit them in this extended abstract (see [15]).

Evaluation of Mini-FreshML expressions may be formalised operationally us-
ing a big-step relation ⇓ on 4-tuples (a, e, v, a′) where e is an expression, v
is a canonical form and a ⊆ a′ are finite sets of atoms with the atoms of e
contained in a. We write a, e ⇓ v, a′ to indicate that in the world with “allo-
cated” atoms a, the expression e evaluates to v and allocates the fresh atoms
a′ \ a (evaluation of fresh and let <<x>>x′ = e in e′ causes dynamic allo-
cation of fresh atoms—see below). Further details of this relation are given
elsewhere [15]. Instead, in this paper we use an equivalent operational seman-
tics based on the notion of frame stacks (or “evaluation contexts”)—see [9] for
a survey. This abstracts away from the details of which particular atoms and
values have been allocated and instead concentrates on the single notion of
termination. In this formulation, as evaluation proceeds a stack of evaluation
frames is built up. Each of these frames is a basic evaluation context: inside
is a hole [–] for which may be substituted another frame (as when composing
frames to form a frame stack) or an expression, which may or may not be in
canonical form. Formally then, a frame stack S consists of a possibly-empty
list of evaluation frames, thus: S ::= [] | S ◦ F . Stacks are assigned types by a
typing relation `s whose details we omit. F ranges over frames as follows:

F ::=
let x = [–] in e | let (x, x′) = [–] in e | let <<x>>x′ = [–] in e |
([–], e) | (v, [–]) | <<[–]>>e | <<v>>[–] | swap [–], e′ in e′′ |
swap v, [–] in e′′ | swap v, v′ in [–] | [–] e | v [–] |
match [–] with C1(x1) -> e1| · · · | CCmax(xCmax) -> eCmax .

We define a termination relation 〈S, e〉↓ (read “e terminates when evaluated
in stack S”) by induction on the structure of e and then on the structure of
S. For example:

• 〈S, fresh〉↓holds if 〈S, a〉↓does for some (or indeed as it turns out, for any)
a ∈ � not occurring in S.

9 Nevertheless the properties of Mini-FreshML contextual equivalence will be such that any atoms in e
behave up to contextual equivalence as though they are bound in e′; for example <<a>>a turns out to be
contextually equivalent to <>b.

• 〈S ◦ let <<x>>x′ = [–] in e, <<a>>v〉↓ holds if 〈S, e[a′/x, ((a a′) · v)/x′]〉↓
does for some (or indeed any) a′ ∈ � not equal to a and not occurring in S
or v. 10

The complete definition of the termination relation is given in Appendix D.
It is related to the big-step semantics as follows.

Theorem. For any closed Mini-FreshML expression e, 〈[], e〉↓holds iff for any
finite set a ⊆ � containing the atoms of e, the relation a, e ⇓ v, a′ holds for
some value v and set of atoms a′ ⊇ a. 2

We wish to consider correctness properties of Mini-FreshML expressions of
type δ, where δ is an algebraic data type 11 corresponding to the syntax of some
object language. For simplicity, we use the untyped λ-calculus as an example
object language; the results easily extend to any such language specified by a
certain notion of nominal signature [17, Definition 2.1]. We thus use a top-level
type declaration just containing:

δ = Var of name | Lam of <<name>>δ | App of δ × δ.

For each λ-term t, define a Mini-FreshML expression [t]e by induction on the
structure of t as follows.

[x]e
def
= Var(x)

[λx . t]e
def
= let x = fresh in Lam(<<x>>[t]e)

[t t′]e
def
= App([t]e, [t

′]e).

Thus in a typing context Γ that assigns type name to each of the free variables
of t, we have Γ ` [t]e : δ.

We want to relate α-equivalence of λ-terms, t ≡α t, to the operational equiva-
lence of the Mini-FreshML expressions [t]e and [t′]e of type δ. We shall use the
traditional notion of contextual equivalence given in the following definition.

Definition (Contextual equivalence). The type-respecting relation of con-
textual pre-order, written Γ ` e 6ctx e

′ : τ , is defined to hold if Γ ` e : τ ,
Γ`e′ : τ , and for all closed, well-typed expressions C[e] containing occurrences
of e, if 〈[], C[e]〉↓ holds, then so does 〈[], C[e′]〉↓ (where C[e′] is the expression
obtained from C[e] by replacing the occurrences of e with e′). The relation of
contextual equivalence, ≈ctx is the symmetrisation of 6ctx.

10 In general (a a′) · v indicates the value obtained from v by interchanging all occurrences of a and a′;
since here a′ does not occur in v, this is the same as replacing occurrences of a by a′ in this case.
11 That is, one where the constructor types σk do not involve function types.

Theorem (Correctness of representation). For any λ-terms t and t′, with
free variables among {x0, . . . , xn} say, then

t ≡α t′ ⇔ {x0 : name, · · · , xn : name} ` [t]e ≈ctx [t′]e : δ. 2

We now show how to formulate a denotational semantics for Mini-FreshML
which we can use to prove this theorem (and other properties of Mini-FreshML
contextual equivalence).

3 Denotational semantics

To give a denotational semantics to Mini-FreshML we use FM-cpos [11,15].
An FM-cpo D is specified by an FM-set and an ordering, satisfying certain
properties. Recall from [3,15] that an FM-set is a setD equipped with an action
π ∈ perm(�), d ∈ D 7→ π · d ∈ D of the group perm(�) of permutations of
the set � of atoms, with the property that every d ∈ D is finitely supported—
meaning that (a a′) · d = d holds for all but finitely many a, a′ ∈ � . (Here
(a a′) ∈ perm(�) is the permutation interchanging a and a′.) To qualify as
an FM-cpo, D must be equipped with a partial order v that is equivariant,
(i.e. d v d′ implies π · d v π · d′); furthermore, D must possess least upper
bounds (lubs) for all ω-chains d0 v d1 v d2 v · · · that are finitely supported,
in the sense that ∀n. (a a′)·dn = dn holds for all but finitely many a, a′ ∈ � . An
FM-cppo is an FM-cpo with a distinguished least element ⊥. A morphism f
of FM-cpos is a monotone function which preserves lubs of finitely-supported
chains and is equivariant (i.e. (a a′)·(f(d)) = f((a a′)·d)). A morphism of FM-
cppos has the same properties but is also strict (f(⊥) = ⊥). FM-cpos (resp.
FM-cppos) and their morphisms form a category FM-Cpo (resp. FM-Cpo⊥).
Least fixed points may be constructed in FM-cppos via the familiar Tarski
construction, since that construction only requires the use of finitely supported
chains.

To each Mini-FreshML type τ we assign an FM-cppo [[τ]]. To do so we make
use of the smash product (−⊗−), sum (−⊕−), lifting (−⊥), strict function
space (− (−) and atom-abstraction ([�]−) constructions. All but the last
two are just as for classical domain theory [2]. The FM-cppo D(D′ is given
by the FM-set of finitely supported 12 functions from D to D′ that preserve the
partial order, lubs of finitely supported ω-chains and ⊥; as usual, the partial
order on D (D′ is inherited from D′ argument-wise. The FM-cppo [�]D
generalises to domain theory the atom-abstraction construct of [3, Sect. 5]; its
elements are equivalence classes [a]d of pairs (a, d) ∈ � ×D for the equivalence
relation induced by the pre-order: (a, d) v (a′, d′) iff (a a′′) · d = (a′ a′′) · d′ for
some/any atom a′′ not in the support of d and d′; the permutation action is

12 Finitely supported with respect to the usual permutation action for functions, given by (π · f)(d) =
π · (f(π−1 · d)).

π · [a]d = [π(a)](π · d) and the partial order is induced by the above pre-order.
Each FM-cppo [[τ]] is defined by induction on the structure of τ as follows.

[[unit]]
def
= 1⊥ [[name]]

def
= � ⊥ [[δ]]

def
= D

[[τ × τ ′]] def
= [[τ]]⊗ [[τ ′]] [[<<name>>τ]]

def
= [�][[τ]] [[τ → τ ′]]

def
= ([[τ]]([[τ ′]]

⊥⊥
)⊥.

Here (−)⊥⊥ is the continuation monad (2) defined in the Introduction; 1⊥ and

� ⊥ are flat FM-cppos on the FM-sets 1
def
= {>} (trivial action: π ·> = >) and

� (canonical action: π ·a = π(a)); and D is the minimal invariant solution to a
certain recursive domain equation on FM-cppos corresponding to the top-level
data type declaration. Such solutions may be constructed in this setting using
the normal technique of chains of embedding-projection pairs [8,2] and come
equipped with an isomorphism i : [[σ1]]⊕ · · · ⊕ [[σCmax]] ∼= [[δ]].

Denotations of typing contexts are given using a finite smash product: [[Γ]]
def
=⊗

x∈dom(Γ) [[Γ(x)]]. The denotation of values v (of type τ in context Γ), of frame
stacks S (of argument type τ in context Γ) and expressions e (of type τ in
context Γ) are given by morphisms in FM-Cpo⊥ of the following kinds

V [[Γ ` v : τ]] : [[Γ]] ◦→ [[τ]]

S[[Γ `s S : τ (?]] : [[Γ]] ◦→ [[τ]]⊥

E [[Γ ` e : τ]] : [[Γ]] ◦→ [[τ]]⊥⊥

where for each FM-cppo D we define D⊥
def
= D(1⊥. Intuitively, an element

of [[τ]]⊥ corresponds to a stack accepting a value of type τ and returning >
for termination, or ⊥ for divergence. Just as the behaviour of expressions is
determined by any enclosing frame stack, the denotation ε ∈ [[τ]]⊥⊥ of some
expression in context is then a function that accepts the denotation of a frame
stack in context and returns either ⊥ or >. Thus, the denotations of expres-
sions in context lie in the underlying set of the continuation monad, where
the ‘result’ set is 1⊥. We have the usual two monad operations for (−)⊥⊥,
return(d) and let x⇐ e in e′, whose standard definitions we omit in this ab-
stract. We also have the element new ∈ (� ⊥)⊥⊥ defined in the Introduction:
this gives us the denotation of the fresh expression:

E [[Γ ` fresh : name]](ρ)
def
= new.

The full definitions of V [[–]], S[[–]] and E [[–]] are given in the Appendix: the
“continuation-passing style” of them is self-evident. For closed values v of
type τ , write V [[v]] to stand for V [[` v : τ]](∅). We use a similar convention for
closed frame stacks and expressions.

An important stepping-stone from denotational semantics to prove properties
of operational semantics is the construction of certain type-indexed logical
relations which relate domain elements to values, frame stacks and expressions

respectively:

Cval
τ ⊂ [[τ]]↓ × Valτ Cstk

τ ⊂ [[τ]]⊥ × Stackτ Cexp
τ ⊂ [[τ]]⊥⊥ × Expτ .

(Here D↓ denotes the non-bottom elements of the FM-cppo D.) For values v
of type τ , frame stacks S and expressions e we require that {d | d Cval

τ v}
is closed under lubs of finitely supported ω-chains, is equivariant (d Cval

τ v
implies π · d Cval

τ π · v) and satisfies:

> Cval
unit ()

a Cval
name v ⇔ a = v

d Cval
δ Ck(v) ⇔ ∃dk ∈ [[σk]] . d = (i ◦ ink)(dk) ∧ dk Cval

σk
v

[a1] d Cval
<<name>>τ <<a2>>v ⇔ (a1 a) · d Cval

τ (a2 a) · v
for some/any a /∈ {a1, a2} ∪ supp(d) ∪ supp(v)

(d1, d2) Cval
τ×τ ′ (v1, v2) ⇔ d1 Cval

τ v1 ∧ d2 Cval
τ ′ v2

d Cval
τ→τ ′ v ⇔ ∀d′ Cval

τ v′ . d(d′) Cexp
τ ′ v v′

σ Cstk
τ S ⇔ ∀d Cval

τ v . σ(d) = > ⇒ 〈S, v〉↓
ε Cexp

τ e ⇔ ∀σ Cstk
τ S . ε(σ) = > ⇒ 〈S, e〉↓

where the meta-notation ∀d Cval
τ v stands for ∀d ∈ [[τ]], v ∈ Valτ . d Cval

τ v
(and similarly for Cstk

τ); and where supp(d) is the support of d and supp(v)
the finite set of atoms occurring in v. 13 It is not straightforward to deduce
that such relations even exist, but this can be proved by using the techniques
of [8], which easily adapt to the world of FM-sets. The following key result is
proved by induction on the derivation of typing judgements.

Theorem (Fundamental property of the logical relations). Write ψ for
finite maps from value identifiers to values, thought of as substitutions which
may be applied in a capture-avoiding manner (written using square brackets)
to values, frame stacks and expressions; let SubstΓ be the set of all ψ with
domain dom(Γ). Given ψ ∈ SubstΓ and ρ ∈ [[Γ]], write ρ CΓ ψ to mean that
the domains of ρ and ψ are equal and for each x ∈ dom(ρ), ρ(x) Cval

Γ(x) ψ(x).
Then for typing contexts Γ, values v, frame stacks S and expressions e, we
have that

Γ ` v : τ ⇒ ∀ρ CΓ ψ . V [[Γ ` v : τ]](ρ) Cval
τ v[ψ]

Γ `s S : τ (? ⇒ ∀ρ CΓ ψ . S[[Γ `s S : τ (?]](ρ) Cstk
τ S[ψ]

Γ ` e : τ ⇒ ∀ρ CΓ ψ . E [[Γ ` e : τ]](ρ) Cexp
τ e[ψ]. 2

As an immediate corollary we get

Theorem (Computational adequacy). Suppose v, S and e are closed ty-
peable values, frame stacks and expressions. Then 〈S, e〉↓ ⇔ E [[e]](S[[S]]) = >
and 〈S, v〉↓ ⇔ S[[S]](V [[v]]) = >. 2

13 Like other sets of syntax, values form an FM-set in which “support of” coincides with “set of atoms of”.

4 Extensionality and correctness results

We now examine how the denotational semantics can be used to prove the
correctness theorem given at the end of Sect. 2.

Definition (CIU-equivalence [4]). The CIU-pre-order relation Γ ` e 6ciu

e′ : τ holds iff Γ`e : τ , Γ`e′ : τ , and for all closing substitutions ψ ∈ SubstΓ

and all closed frame stacks S, 〈S, e[ψ]〉↓ implies 〈S, e′[ψ]〉↓. The symmetrisation
is called CIU-equivalence and written Γ ` e ≈ciu e

′ : τ .

Combining the compositionality properties of the denotational semantics with
the computational adequacy theorem and the properties of the logical relation
given above, we obtain:

Theorem (Coincidence). For closed expressions: ` e 6ctx e
′ : τ iff ` e 6ciu

e′ : τ iff E [[e]] Cexp
τ e′; for closed values we also have E [[v]] Cexp

τ v′ iff V [[v]] Cval
τ

v′. For open expressions: Γ ` e 6ctx e
′ : τ iff Γ ` e 6ciu e

′ : τ . 2

Then using properties of the relation Cval
τ we get:

Corollary (Extensionality).
For unit values: ` v ≈ctx v

′ : unit iff v = v′ = ().
For name values : ` a ≈ctx a

′ : name iff a = a′ ∈ � .
For data values : ` Ck(v) ≈ctx Ck(v

′) : δ iff ` v ≈ctx v
′ : σk.

For pair values : ` (v1, v2) ≈ctx (v′1, v′2) : τ1 × τ2 iff ` v1 ≈ctx v
′
1 : τ1 and

` v2 ≈ctx v
′
2 : τ2.

For name-abstraction values : ` <<a>>v ≈ctx <<a′>>v′ : <<name>>τ iff ` (a a′′)·
v ≈ctx (a′ a′′)·v′ : τ for some/any a′′ ∈ � not equal to a or a′ and not occurring
in v or v′.
For function values : ` f ≈ctx f ′ : τ → τ ′ iff for all closed v of type τ ,
` f v ≈ctx f

′ v : τ ′. 2

Finally, the correctness of representation theorem in Sect. 2 follows from this
Extensionality property of names, data, pair and name-abstraction values, us-
ing the characterisation of α-equivalence for λ-terms from [3, Proposition 2.2].

5 Conclusion

Doing domain theory in the world of FM-sets seems to combine the familiarity
and power of classical domain theory with a refined semantics of fresh names
that simplifies and extends what has previously been achieved for freshness
with functor category semantics. Here we applied this new approach using
a continuation monad with a very simple domain of “results” (1⊥) to prove
properties of FreshML. Variations on this theme seem very promising; for ex-
ample, replacing 1⊥ by S (1⊥ for a suitable (recursively defined) FM-cppo
of “states” should give a useful denotational semantics of ML-style references

with no restriction on the type of value stored—we plan to explore this else-
where. A somewhat different application of “FM domain theory” appears in
[11]. Finally we should mention that game semantics can also make good use
of FM-sets to achieve new full abstraction results: see [1].

References

[1] S. Abramsky, D. R. Ghica, A. S. Murowski, C.-H. L. Ong, and I. D. B. Stark. Nominal games and full
abstraction for the nu-calculus. Submitted, 2004.

[2] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Computer Science, volume 3,
pages 1–168. Clarendon Press, 1994.

[3] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2002.

[4] I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects. Journal of Functional
Programming, 1(3):287–327, 1991.

[5] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, Dept.
Computer Science, Univ. Edinburgh, 1989.

[6] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.

[7] S. L. Peyton Jones. Tackling the awkward squad: Monadic input/output, concurrency, exceptions, and
foreign-language calls in Haskell. In R. Steinbruggen C. A. R. Hoare, M. Broy, editor, Engineering
Theories of Software Construction, pages 47–96. IOS Press, 2001.

[8] A. M. Pitts. Relational properties of domains. Information and Computation, 127:66–90, 1996.

[9] A. M. Pitts. Operational semantics and program equivalence. In Applied Semantics, Advanced
Lectures, volume 2395 of LNCS Tutorial, pages 378–412. Springer, 2002.

[10] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186:165–193, 2003.

[11] A. M. Pitts and T. Sheard. On the denotational semantics of staged execution of open code. Submitted,
2004.

[12] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. In A. D.
Gordon and A. M. Pitts, editors, Higher Order Operational Techniques in Semantics, pages 227–273.
Cambridge University Press, 1998.

[13] M. R. Shinwell. Swapping the atom: Programming with binders in Fresh O’Caml. Proc. MERλIN
2003.

[14] M. R. Shinwell and A. M. Pitts. Fresh O’Caml User Manual. Cambridge University Computer
Laboratory, September 2003. Available at 〈http://www.freshml.org/foc/〉.

[15] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made simple.
In Proc. ICFP ’03, pages 263–274. ACM Press, 2003.

[16] I. D. B. Stark. Categorical models for local names. Lisp and Symbolic Computation, 9(1):77–107,
1996.

[17] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In Proc. CSL’03 & KGC, volume
2803 of LNCS, pages 513–527. Springer, 2003.

[18] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461–493, 1992.

A Denotation of values (expressions in canonical form)

The function V [[Γ ` v : τ]] : [[Γ]] ◦→ [[τ]] maps ⊥ to itself and for non-bottom
arguments is defined by induction on the structure of the canonical form v as
given below.

Notation. In this and the following appendices, write λx . t for the function

acting as λx.t except that (λx.t)(⊥)
def
= ⊥. Extend this notation in the obvious

way to write λ〈d1, d2〉.t for strict functions D1⊗D2 ◦→ D and λ [a] d.t for strict
functions [�]D ◦→ D′. (Note that this notation imposes no conditions as to
which particular representative in [�]D is chosen: the semantics below makes
this explicit when required.) We also write 〈d1, d2〉 to indicate the construction

of a smash pair (such that 〈d1, d2〉 def
= ⊥D1⊗D2 when either of d1 ∈ D1 and

d2 ∈ D2 are bottom).

V[[Γ ` x : τ]](ρ)
def
= ρ(x). V[[Γ ` () : unit]](ρ)

def
= >. V[[Γ ` a : name]](ρ)

def
= a.

V[[Γ ` Ck(v) : δ]](ρ)
def
= (i ◦ ink)(V[[Γ ` v : σk]](ρ)).

V[[Γ ` (v, v′) : τ × τ ′]](ρ)
def
= 〈V[[Γ ` v : τ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉.

V[[Γ ` <<a>>v : <<name>>τ]](ρ)
def
= [a] (V[[Γ ` v : τ]](ρ)).

V[[Γ ` fun f(x) = e : τ → τ ′]](ρ)
def
= fix(λf ′ ∈ [[τ → τ ′]].

λx′ ∈ [[τ]] . E [[Γ, f : τ → τ ′, x : τ ` e : τ ′]](ρ[f 7→ f ′, x 7→ x′])).

B Denotation of frame stacks

The function S[[Γ `s S : τ (?]] : [[Γ]] ◦→ [[τ]]⊥ maps ⊥ to itself and for non-
bottom arguments is defined by induction on the structure of S as follows.

S[[Γ `s [] : τ (?]](ρ)
def
= λx ∈ [[τ]] .>.

S[[Γ `s S ◦ let x = [–] in e : τ (?]](ρ)
def
=

λd ∈ [[τ]] . E [[Γ, x : τ ` e : τ ′]](ρ[x 7→ d])(S[[Γ `s S : τ ′(?]](ρ)).

S[[Γ `s S ◦ let (x, x′) = [–] in e : τ × τ ′(?]](ρ)
def
= λ〈d1, d2〉 ∈ [[τ × τ ′]].

E [[Γ, x : τ, x′ : τ ′ ` e : τ ′′]](ρ[x 7→ d1, x
′ 7→ d2])(S[[Γ `s S : τ ′′(?]](ρ)).

S[[Γ `s S ◦ let <<x>>x′ = [–] in e : <<name>>τ (?]](ρ)
def
=

λ [a] d ∈ [[<<name>>τ]] . E [[Γ, x : name, x′ : τ ` e : τ ′]]
(ρ[x 7→ a′, x′ 7→ (a a′) · d])(S[[Γ `s S : τ ′(?]](ρ))

for some/any a′ ∈ � \ ({a} ∪ supp(S, d, e)).

S[[Γ `s S ◦ ([–], e) : τ (?]](ρ)
def
= λd ∈ [[τ]].

E [[Γ ` e : τ ′]](ρ)(λd′ ∈ [[τ ′]] . S[[Γ `s S : τ × τ ′]](ρ)〈d, d′〉).
S[[Γ `s S ◦ (v, [–]) : τ ′(?]](ρ)

def
= λd ∈ [[τ ′]].

S[[Γ `s S : τ × τ ′]](ρ)〈V[[Γ ` v : τ]](ρ), d〉.
S[[Γ `s S ◦ <<[–]>>e : name(?]](ρ)

def
= λa ∈ [[name]].

E [[Γ ` e : τ]](ρ)(λd ∈ [[τ]] . S[[Γ `s S : <<name>>τ]](ρ)([a] d)).

S[[Γ `s S ◦ <<v>>[–] : τ (?]](ρ)
def
= λd ∈ [[τ]].

S[[Γ `s S : <<name>>τ]](ρ)([V[[Γ ` v : name]](ρ)] d).

S[[Γ `s S ◦ swap [–], e′ in e′′ : name(?]](ρ)
def
= λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]] . E [[Γ ` e′′ : τ]](ρ)
(λd ∈ [[τ]] . S[[Γ `s S : τ (?]](ρ)((a a′) · d))).

S[[Γ `s S ◦ swap v, [–] in e′′ : name(?]](ρ)
def
= λa′ ∈ [[name]].

E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]] . S[[Γ `s S : τ (?]](ρ)(((V[[Γ ` v : name]](ρ)) a′) · d)).

S[[Γ `s S ◦ swap v, v′ in [–] : τ (?]](ρ)
def
= λd ∈ [[τ]].

S[[Γ `s S : τ (?]](ρ)(((V[[Γ ` v : name]](ρ)) (V[[Γ ` v′ : name]](ρ))) · d).

S[[Γ `s S ◦ [–] e : (τ → τ ′)(?]](ρ)
def
= λd ∈ [[τ → τ ′]].

E [[Γ ` e : τ]](ρ)(λd′ ∈ [[τ]] . (d d′)(S[[Γ `s S : τ ′(?]](ρ))).

S[[Γ `s S ◦ v [–] : τ (?]](ρ)
def
= λd ∈ [[τ]].

((V[[Γ ` v : τ → τ ′]](ρ)) d)(S[[Γ `s S : τ ′(?]](ρ)).

S[[Γ `s S ◦ match [–] with · · · | Ck(xk) -> ek | · · · : δ(?]]
def
=

λd ∈ [[δ]] . E [[Γ, xk : σk ` ek : τ]](ρ[xk 7→ dk])(S[[Γ `s S : τ (?]](ρ))
for the unique k and dk such that d = (i ◦ ink)(dk).

C Denotation of expressions

The function E [[Γ ` e : τ]] : [[Γ]] ◦→ [[τ]]⊥⊥ maps ⊥ to itself and for non-bottom
arguments is defined by induction on the structure of e as follows.

E [[Γ ` v : τ]](ρ)
def
= λσ ∈ [[τ]] . σ(V[[Γ ` v : τ]](ρ)) (v a canonical form).

E [[Γ ` Ck(e) : δ]](ρ)
def
= λσ ∈ [[δ]]⊥ . E [[Γ ` e : σk]](ρ)(λd ∈ [[σk]] . σ((i ◦ ink)(d))).

E [[Γ ` (e, e′) : τ × τ ′]](ρ)
def
= λσ ∈ [[τ × τ ′]]⊥.

E [[Γ ` e : τ]](ρ)(λd ∈ [[τ]] . E [[Γ ` e′ : τ ′]](ρ)(λd′ ∈ [[τ ′]] . σ〈d, d′〉)).
E [[Γ ` fresh : name]](ρ)

def
= new

def
= λσ ∈ [[name]] . σ(a) (any a ∈ � \ supp(σ)).

E [[Γ ` <<e>>e′ : <<name>>τ]](ρ)
def
= λσ ∈ [[<<name>>τ]]⊥.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]] . E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]] . σ([a] d))).

E [[Γ ` let x = e in e′ : τ]](ρ)
def
= λσ ∈ [[τ]]⊥.

E [[Γ ` e : τ ′]](ρ)(λd′ ∈ [[τ ′]] . E [[Γ, x : τ ′ ` e′ : τ]](ρ[x 7→ d′])(λd ∈ [[τ]] . σ(d))).

E [[Γ ` let (x, x′) = e in e′ : τ]](ρ)
def
= λσ ∈ [[τ]]⊥.

E [[Γ ` e : τ1 × τ2]](ρ)(λ〈d1, d2〉 ∈ [[τ1 × τ2]].
E [[Γ, x : τ1, x

′ : τ2 ` e′ : τ]](ρ[x 7→ d1, x
′ 7→ d2])(λd ∈ [[τ]] . σ(d))).

E [[Γ ` let <<x>>x′ = e in e′ : τ]](ρ)
def
= λσ ∈ [[τ]]⊥.

E [[Γ ` e : <<name>>τ ′]](ρ)(λ [a] d′ ∈ [[<<name>>τ ′]].
E [[Γ, x : name, x′ : τ ′ ` e′ : τ]](ρ[x 7→ a′, x′ 7→ (a a′) · d′])(λd ∈ [[τ]] . σ(d))

(any a′ ∈ � \ supp(σ, a, d, e, e′, ρ)).

E [[Γ ` swap e, e′ in e′′ : τ]](ρ)
def
= λσ ∈ [[τ]]⊥ . E [[Γ ` e : name]](ρ)(λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]] . E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]] . σ((a a′) · d)))).

E [[Γ ` e e′ : τ]](ρ)
def
= λσ ∈ [[τ]]⊥.

E [[Γ ` e : τ → τ ′]](ρ)(λd ∈ [[τ → τ ′]] . E [[Γ ` e′ : τ]](ρ)(λd′ ∈ [[τ]] . (d d′)(σ))).

E [[Γ ` match e with · · · | Ck(xk) -> ek | · · · : τ]]
def
=

λσ ∈ [[τ]]⊥ . E [[Γ ` e : δ]](ρ)(λd′ ∈ [[δ]].
E [[Γ, xk : σk ` ek : τ]](ρ[xk 7→ dk])(λd ∈ [[τ]] . σ(d)))

for the unique k and dk such that d′ = (i ◦ ink)(dk) when d′ 6= ⊥.

D Termination relation

〈S, e〉↓ is inductively defined by the following axiom and rules, where e, e′, . . .
range over expressions, v, v′, . . . over expressions in canonical form, and a, a′, . . .
over atoms.

〈[], v〉↓

〈S, e[v/x]〉↓
〈S ◦ let x = [–] in e, v〉↓

〈S, e[v/x, v′/x′]〉↓
〈S ◦ let (x, x′) = [–] in e, (v, v′)〉↓

〈S, e[a′/x, ((a a′) · v)/x′]〉↓
for some/any a′ ∈ 	 such that a′ /∈ supp(S) ∪ {a} ∪ supp(v)

〈S ◦ let <<x>>x′ = [–] in e, <<a>>v〉↓

〈S ◦ (v, [–]), e〉↓
〈S ◦ ([–], e), v〉↓

〈S, (v′, v)〉↓
〈S ◦ (v′, [–]), v〉↓

〈S ◦ <<v>>[–], e〉↓
〈S ◦ <<[–]>>e, v〉↓

〈S, <<v>>v′〉↓
〈S ◦ <<v>>[–], v′〉↓

〈S ◦ swap a, [–] in e′′, e′〉↓
〈S ◦ swap [–], e′ in e′′, a〉↓

〈S ◦ swap a, a′ in [–], e′′〉↓
〈S ◦ swap a, [–] in e′′, a′〉↓

〈S, (a a′) · v〉↓
〈S ◦ swap a, a′ in [–], v〉↓

〈S ◦ v [–], e〉↓
〈S ◦ [–] e, v〉↓

v = (fun f(x) = e) 〈S, e[v/f, v′/x]〉↓
〈S ◦ v [–], v′〉↓

v = Ck(vk), for some 1 6 k 6 Cmax 〈S, ek[vk/xk]〉↓
〈S ◦ match [–] with C1(x1) -> e1| · · · | CCmax (xCmax) -> eCmax , v〉↓v

〈S, e〉↓
〈S, Ck(e)〉↓

a ∈ 	 a /∈ supp(S) 〈S, a〉↓
〈S, fresh〉↓

〈S ◦ ([–], e′), e〉↓
〈S, (e, e′)〉↓

〈S ◦ <<[–]>>e′, e〉↓
〈S, <<e>>e′〉↓

〈S ◦ let x = [–] in e′, e〉↓
〈S, let x = e in e′〉↓

〈S ◦ let (x, x′) = [–] in e′, e〉↓
〈S, let (x, x′) = e in e′〉↓

〈S ◦ let <<x>>x′ = [–] in e′, e〉↓
〈S, let <<x>>x′ = e in e′〉↓

〈S ◦ [–] e′, e〉↓
〈S, e e′〉↓

〈S ◦ swap [–], e′ in e′′, e〉↓
〈S, swap e, e′ in e′′〉↓

〈S ◦ match [–] with C1(x1) -> e1| · · · | CCmax (xCmax) -> eCmax , e〉↓e
〈S, match e with C1(x1) -> e1| · · · | CCmax (xCmax) -> eCmax 〉↓e

