
Full Abstraction for Nominal Scott Domains
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Abstract

We develop a domain theory within nominal sets and present pro-
gramming language constructs and results that can be gained from
this approach. The development is based on the concept of orbit-
finite subset, that is, a subset of a nominal sets that is both finitely
supported and contained in finitely many orbits. This concept ap-
pears prominently in the recent research programme of Bojańczyk
et al. on automata over infinite languages, and our results establish
a connection between their work and a characterisation of topologi-
cal compactness discovered, in a quite different setting, by Winskel
and Turner as part of a nominal domain theory for concurrency. We
use this connection to derive a notion of Scott domain within nomi-
nal sets. The functionals for existential quantification over names
and ‘definite description’ over names turn out to be compact in
the sense appropriate for nominal Scott domains. Adding them, to-
gether with parallel-or, to a programming language for recursively
defined higher-order functions with name abstraction and locally
scoped names, we prove a full abstraction result for nominal Scott
domains analogous to Plotkin’s classic result about PCF and con-
ventional Scott domains: two program phrases have the same ob-
servable operational behaviour in all contexts if and only if they
denote equal elements of the nominal Scott domain model. This is
the first full abstraction result we know of for higher-order func-
tions with local names that uses a domain theory based on ordinary
extensional functions, rather than using the more intensional ap-
proach of game semantics.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Lambda calculus
and related systems; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Denotational semantics

General Terms Languages, Theory

Keywords Denotational Semantics, Domain Theory, Full Ab-
straction, Nominal Sets, Symmetry

1. Introduction

Various forms of symmetry are used in many branches of mathe-
matics and computer science. The results in this paper have to do
with using symmetry to extend the reach of computation theory
from finite data structures and algorithms to ones that, although
they are infinite, become finite when quotiented by a suitable no-
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tion of symmetry. We focus on higher-order functional computa-
tion with data that may involve unboundedly many different names
and symmetries given by permutations of those names. A simple
example of such data is the abstract syntax trees for a language
involving binding constructs, such as the λ-calculus with named
bound variables: infinitely many abstract syntax trees represent a
particular λ-term, modulo permuting their bound names. This way
of viewing α-equivalence via symmetry was the initial stimulus for
the development of nominal sets [14]—a theory for mathematical
structures involving atomic names (that is, names whose only at-
tribute is their identity) based on name permutations and the notion
of finite support; we review this concept in Section 2.

Nominal sets have been used to develop the semantic proper-
ties of binders and locally scoped names, with applications to func-
tional and logic programming, to equational logic and rewriting, to
type theory and to interactive theorem proving; see the bibliogra-
phy [1]. The work by Montanari et al. [22] on the π-calculus and
HD-automata provides a somewhat different application of nom-
inal sets (an independent one, since it uses a notion of ‘named
set’ that only subsequently was shown to be equivalent to nominal
sets [15, 37]). The use of symmetries of names (of fresh commu-
nication channels in this case) to get finite representations of in-
finitely many states is at the forefront in their work. It has recently
been subsumed and generalised in a programme of what one might
call ‘orbit-finite’ automata theory [7, 8, 13, 23, 42].

In this paper we bring together the ‘names and binders’ and the
‘orbit-finite state space’ aspects of nominal sets. We observe that a
key concept underlying the automata-theoretic research programme
of Bojańczyk et al. [6], that of being an orbit-finite subset, turns
out to subsume a notion of topological compactness introduced,
for quite different purposes, by Winskel and Turner in their work
on nominal domain theory for concurrency [40]. We explain the
connection and use it to develop a version of the classic notion of
Scott domain within nominal sets. (Previous work on denotational
semantics with nominal sets [34, 39] has focussed on simpler no-
tions of domain, analogous either to ω-chain complete posets, or
to algebraic lattices.) A domain element is compact if it stands for
a finite approximation of a computation. We define this notion for
our setting (in Definition 5) and show that the functionals for ‘there
exists a name such that. . . ’ and ‘the unique name such that. . . ’ are
compact. Plotkin [30] famously proves that PCF with parallel-or
is fully abstract with respect to conventional Scott domains, in the
sense that two expressions have equal denotations if and only if
they the have the same observable operational behaviour in all con-
texts. We obtain an analogous result for nominal Scott domains,
through adding the above functionals, together with parallel-or, to
a programming language for recursively defined higher-order func-
tions with name-abstractions and locally scoped names. Thus this
paper makes the following contributions.

• We show (Theorem 8) that a finitely supported subset of a
nominal set is compact with respect to unions that are uniform-



directed in the sense of Winskel and Turner if and only if it is
orbit-finite.

• We use orbit-finite subsets to generalise the notion of Scott do-
main from ordinary sets to nominal sets; we prove that the cat-
egory of nominal Scott domains is cartesian closed, has least
fixed points and is closed under forming domains of name ab-
stractions (Sections 5 and 6). Although there are infinitely many
names, the nominal Scott domain of names has some strong
finiteness properties. In particular, we show that the functionals
for existential quantification over names and definite descrip-
tion of names are uniform-compact elements of their function
domains (Examples 14 and 15).

• We define a language PNA (Programming with Name Abstrac-
tions) that extends Plotkin’s PCF language with names that can
be locally scoped, swapped, abstracted and concreted. In order
to illustrate these facilities for programming with name abstrac-
tions, PNA has a nominal algebraic datatype for representing
λ-terms. PNA’s operational semantics is inspired by [19, 27];
in particular, its method for deconstructing name abstractions
makes use of Odersky-style, ‘scope-intrusive’ local names. We
give a simple denotational semantics for PNA using nominal
Scott domains and prove that it is computationally adequate
(Theorem 27).

• We extend PNA to a language PNA+ with syntax, operational
semantics and denotational semantics for parallel-or, for exis-
tentially quantifying over names and for definite descriptions
of names. We prove that the nominal Scott domain model of
PNA+ is fully abstract: any two expressions are contextually
equivalent if and only if they have equal denotations in the
model (Theorem 30).

There are full abstraction results for higher-order functions with
local names using the intensional approach of game semantics [3,
18, 41], but our Theorem 30 is the first such result we know of
that is based on ordinary extensional functions. There is no sim-
ilar result known for FreshML [35], which uses generative rather
than Odersky-style local names to implement the features that PNA
provides for programming with name abstractions; and yet PNA
(extended with recursive types) is in principle as expressive as
FreshML, in view of Lösch and Pitts [19]. Our proof of Theo-
rem 30 seems novel compared with other proofs of full abstraction
results in the literature. We only sketch it here—the details will be
published elsewhere. On the other hand it gives rise to some open
problems that we discuss in Section 10, together with a number of
possibilities for future work exploiting the use of orbit-finite sub-
sets within nominal domain theory.

2. Finite support

We are interested in the denotational semantics of programs written
in languages featuring binding constructs involving names that can
be tested for equality. To take symmetry into account, we fix some
countably infinite set A (of ‘atomic names’) and consider finite
permutations of A, that is, bijections π : A ∼= A with the property
that π a = a holds for all but finitely many a ∈ A. Recall that an
action of such permutations on a set X is a binary operation ·
satisfying id · x = x (where id is the identity permutation) and
π′ · (π · x) = (π′ ◦ π) · x (where ◦ is composition).

Actions of finite permutations of A on sets X and Y can be
extended to their cartesian product X × Y by defining for each
x ∈ X and y ∈ Y

π · (x, y) , (π · x, π · y). (1)

More interestingly, given actions on X and Y , we get an action on
the set of functions Y X by defining for each f ∈ Y X

π · f , λx ∈ X � π · (f(π−1 · x)) (2)

where π−1 is the inverse of the permutation π. In particular, taking
Y = 2 = {true, false}, a two-element set with trivial action

(π · true = true, π · false = false), we get an action on 2X and
hence on subsets of X: for each S ⊆ X

π · S , {π · x | x ∈ S}. (3)

Programs, being finite syntactic objects, only involve finitely
many atomic names in their construction; whereas the elements of
a set X used to denote program behaviours may well be infinite
mathematical objects. We wish to limit our attention to infinite
behaviours that depend only upon finitely many atomic names,
as doing so yields a richer and better behaved theory. We can
make precise what it means to ‘only depend upon finitely many
atomic names’ entirely in terms of symmetry, that is, in terms of
the permutation action. An element x ∈ X is supported by a
set A ⊆ A of atomic names if every permutation π satisfying
(∀a ∈ A) π a = a also satisfies π · x = x. That is, permutations
that preserve A also preserve x. We say that a set X equipped with
an action of finite permutations of A is a nominal set if each of its
elements is supported by some finite set of atomic names. In this
case one can show that for each x ∈ X there is a smallest finite
subset of A supporting x, which we write as suppx [14]. We also
write a # x to mean a /∈ suppx. Note that since suppx is a finite
set and A is not, given x we can always find some a ∈ A satisfying
a # x.

Given a nominal set X , the subsets that possess a finite support
with respect to the action in (3) are called finitely supported subsets
of X . Not every subset is finitely supported. For example, when
X = A (with action π·a = π a), the only finitely supported subsets
are those S ⊆ A for which either S, or A − S is finite. We write
PfsX for the collection of all finitely supported subsets of X , and
with the action in (3) this is a nominal set. Indeed it is the power
object (in the sense of topos theory [17]) for a model of higher-
order logic based on nominal sets. The main difference between
this model and the classical one is that it fails to satisfy choice
principles.1 As we discuss next, this difference causes nominal
domain theory to be something more than just ‘classical domain
theory carried out in the nominal model of higher-order logic’.

3. Uniform-directed joins

A key idea behind domain theory [5] is to give denotations to pro-
grams with potentially infinite behaviour as a limit of approxima-
tions. For domain theory based on approximation via a partial order
(rather than a metric), limits are joins of chains (linearly ordered
subsets), or more generally, joins of directed subsets (where every
finite set of elements has an upper bound in the subset). So long as
one considers chains of arbitrary (ordinal) length, classically there
is no difference between using joins of chains and using directed
joins [20]. However, the equivalence of the two approaches relies
on the Axiom of Choice and, as we noted above, that fails to hold
for nominal sets. Therefore, in the nominal version of domain the-
ory, formulating limits in terms of joins of chains is more restric-
tive than using joins of arbitrary directed subsets. (Of course, both
the chains and the directed subsets should be finitely supported,
to make sense nominally.) Winskel and Turner [40] provide a com-
pelling reason for restricting attention to joins of chains. They show
that a key notion provided by the nominal approach, the operation

1 The associated model of set theory goes back to work in the 1930s by
Fraenkel and Mostowski, who devised it specifically to negate the Axiom
of Choice [see 12, Remark 2.22].



of name abstraction, preserves joins of chains, but does not neces-
sarily preserve joins of directed subsets in general. We give below a
simplified version of the Winskel-Turner example of the failure of
name abstraction to preserve joins of all finitely supported, directed
subsets.

Definition 1 (name abstraction). A nominal poset is simply a
nominal set D equipped with a partial order ⊑ that is respected
by the action of permutations: d ⊑ d′ ⇒ π ·d ⊑ π ·d′. Given such
a D, we get a pre-order on A ×D by defining (a, d) ⊑ (a′, d′) to
hold whenever we have (a a′′) · d ⊑ (a′ a′′) · d′ in D for some
(or indeed, for any) a′′ # a, a′, d, d′. (As usual, (a a′) denotes the
permutation that swaps a and a′, leaving all other atomic names
fixed.) We write [A]D for the poset obtained by quotienting A×D
by the equivalence relation associated with this pre-order, and 〈a〉d
for the equivalence class of (a, d). Defining a permutation action by
π · 〈a〉d = 〈π a〉(π · d), one can show that [A]D is also a nominal
poset, with supp〈a〉d = (supp d) − {a}. An element of [A]D is
an abstract form of α-equivalence class for elements of D. It is
abstract, because D itself may not consist of syntactic data—we
just need to know how name permutations act on its elements.

Example 2. For any nominal set X , partially ordering the elements
of the nominal set PfsX of finitely supported subsets of X by
inclusion, we get a nominal poset. Consider the case when X = A.
Given a ∈ A, the name abstraction function PfsA → [A](PfsA)
mapping each S ∈ PfsA to 〈a〉S does not preserve all joins
of finitely supported, directed subsets. For example, consider the
directed subset F ∈ Pfs(PfsA) consisting of all finite sets of
atomic names. F has empty support and its join

⊔

F is equal to
A. However, fixing upon a 6= a′ in A, one has 〈a〉A = 〈a′〉A 6=
〈a′〉(A − {a}) and one can check that

⊔

{〈a〉F | F ∈ F} ⊑
〈a′〉(A− {a}). So 〈a〉(

⊔

F) 6=
⊔

{〈a〉F | F ∈ F}.

A motivation for using nominal rather than ordinary domains to
do denotational semantics is precisely to gain access to this oper-
ation of name abstraction, which can be used to model language
features involving binders. So finding a setting in which name ab-
straction preserves limits of approximations is crucial. It turns out
that the problem with the directed subset F in the above example
is its lack of what Winskel and Turner call uniformity: each F ∈ F
is a finite set of atomic names and hence is supported by F itself.
Thus, there is no single finite support for all the elements of F .

Definition 3 (udcpos). Given a nominal set X , call a subset S ⊆
X uniformly supported if there is a finite set A ⊆f A that supports
each x ∈ S. A uniform-directed subset of a nominal poset is a
subset S that is both uniformly supported and directed. A uniform-
directed complete partial order (udcpo) is a nominal poset that has
joins

⊔

S for all uniform-directed subsets S.

Lemma 4. In a nominal poset D, every finitely supported chain
C is necessarily uniformly supported. In particular, each d ∈ C is
supported by suppC.

For a proof, see Turner [39, Lemma 3.4.2.1]. As Turner points
out, using this lemma, the classic result of Markowsky [20] can be
extended to show that a nominal poset is a udcpo if and only if it has
joins for all finitely supported chains. So in effect udcpos give us a
domain theory within the higher-order logic of nominal sets based
on chain-completeness. As we will see in Section 6, they also give
us access to the name-abstraction construct.

We model potentially infinite program behaviours in languages
with names using denotations that are uniform-directed joins of
approximations to the behaviour. Each approximation should be
finite in a suitable sense. For classical domain theory this amounts
to being compact (also known as ‘isolated’) with respect to directed
joins. By analogy, we make the following definition.

Definition 5 (algebraic udcpo). An element u ∈ D of a udcpo
D is uniform-compact if for all uniform-directed subsets S ⊆ D,
u ⊑

⊔

S ⇒ (∃d ∈ S) u ⊑ d. We write KD for the set of
uniform-compact elements of D. We say that D is an algebraic

udcpo if each of its elements is the join of a uniform-directed subset
of KD. D is ω-algebraic if in addition the underlying set of KD is
countable.

Recall that a subset of a set is compact with respect to directed
joins (unions) of subsets if and only if it is a finite set. Here we
are restricting attention to a smaller class of joins, the uniform-
directed ones. Therefore, we expect uniform-compactness to be a
more liberal notion of finiteness. We show in the next section that it
corresponds precisely to the notion of orbit-finite subset introduced
by Bojańczyk et al.2

4. Orbit-finite subsets

The action of finite permutations of A on the elements of a nominal
set X partitions it into orbits: two elements x and x′ are in the same
orbit if x′ = π · x for some finite permutation π. For example A

itself has just one orbit. A × A has two, namely {(a, a) | a ∈ A}
and {(a, a′) ∈ A

2 | a 6= a′}, and in general A
n has always

finitely many orbits. In contrast, the nominal set A∗ of finite lists
of atomic names has infinitely many orbits (since lists of different
length cannot be in the same orbit).

Definition 6 (orbit-finite subsets). A finitely supported subset
S ∈ PfsX of a nominal set X is said to be orbit-finite if it is
contained in the union of finitely many orbits of X .

Bojańczyk et al. investigate orbit-finite data structures and algo-
rithms (for a generalised version of nominal sets over any ‘Fraı̈ssé
symmetry’). Note that an orbit-finite subset may well have in-
finitely many different elements. For example, A is an orbit-finite
subset of itself. In order to compute with orbit-finite subsets one
needs an effective presentation of them and their operations. The
following notion turns out to give an alternative characterisation of
orbit-finite subsets that is suitable for calculation. It was introduced
independently by Turner [39, Definition 3.4.3.2], Gabbay [11, Sec-
tion 3.3; 12, Definition 3.1; 13, Definition 3.1] and Bojańczyk et
al. [6, Section 8], whose ‘hull’ terminology we adopt here. (See
also Ciancia and Montanari [9, Definition 6.10], whose ‘closures’
are hulls of the form hullsuppx−{a}{x}.)

Definition 7 (orbit-finite hulls). Let X be a nominal set. Given
finite subsets A ⊆f A and F ⊆f X , define hullAF , {π ·x | π #
A ∧ x ∈ F}, where π # A means that π is a finite permutation of
A that fixes each a ∈ A.

It is not hard to see that hullAF is supported by A and contained
in a finite union of orbits of X (namely the orbits of each x ∈ F ).
What is less obvious is that every orbit-finite subset is of this
form. This follows from a key technical property of hulls, proved
independently by Turner [39, Lemma 3.4.3.5] and Bojańczyk et
al. [6, Lemma 3]:

(∀A,A′ ⊆f A, F ⊆f X) A ⊆ A′ ⇒

(∃F ′ ⊆f X) hullAF = hullA′F ′. (4)

This property can be used to prove the following theorem that
makes the connection between orbit-finite subsets and the notion
of uniform-compactness from the previous section. Consider the
nominal poset PfsX of finitely supported subsets of a nominal set
X , the partial order being subset inclusion. It possesses joins for all

2 Bojańczyk et al. [6, Section 3] use the term ‘finitary subset’ for what we
call an orbit-finite subset.



finitely supported subsets, given by union, and hence in particular
it is a udcpo.

Theorem 8. An element of the udcpo PfsX is uniform-compact if
and only if it is an orbit-finite subset of X; and it is an orbit-finite
subset of X if and only if it is equal to hullAF for some A ⊆f A

and F ⊆f X . Every S ∈ PfsX is the uniform-directed join of the
orbit-finite subsets contained in and with the same support as S.
Thus PfsX is an algebraic udcpo in the sense of Definition 5.

So there is the following analogy

finite

directed
sets ∼

orbit-finite

uniform-directed
nominal sets

which we apply next to the classical notion of Scott domain that
arose in the denotational semantics of higher-order functional pro-
gramming languages [30, Lemma 4.4].

5. Nominal Scott domains

A nominal Scott domain D is by definition an ω-algebraic udcpo
with a least element and joins for all finitely supported subsets that
have upper bounds (or equivalently, by Theorem 8, joins for all
orbit-finite subsets that have upper bounds).

Remark 9 (flat domains). If X is a nominal set, the flat nominal
poset X⊥ is given by X ⊎ {⊥}, with partial order d ⊑ d′ ⇔
d = ⊥ ∨ d = d′ and permutation action extending that on X by
π · ⊥ = ⊥. It is easily seen to be a nominal Scott domain, with
K(X⊥) = X⊥.

Definition 10. The category Nsd has nominal Scott domains for
its objects and for its morphisms the functions f : D → D′ that
are both equivariant, that is, f(π ·d) = π · (f d) holds for all finite
permutations π and all d ∈ D, and uniform-continuous, that is,
monotone and preserving uniform-directed joins.

Remark 11 (Winskel-Turner domain theory). The ‘nominal do-
main theory for concurrency’ of Winskel and Turner [40] intro-
duces the notion of uniform-directed join and contains a characteri-
sation of compact elements in terms of the hull construct from Defi-
nition 7. However, their domains are more specific than ours as they
are based on path sets (downwards-closed subsets of preorders),
which form prime-algebraic complete lattices. Modulo countabil-
ity, their category FMCts∅ is a full subcategory of Nsd.

Theorem 12. Nsd is cartesian closed.

Proof. The terminal object is given by the trivial flat domain ∅⊥.
The product of D1 and D2 is given by their cartesian product, with

permutation action as in (1) and partial order (d1, d2) ⊑ (d′1, d
′
2) ,

d1 ⊑ d′1 ∧ d2 ⊑ d′2. Exponentials D1 �D2 have an underlying set
consisting of all uniform-continuous functions f : D1 → D2 that
are finitely supported with respect to the usual permutation action
for functions given in (2). The partial order on such functions is also
given as usual, argument-wise: f ⊑ f ′ , (∀d ∈ D1) f d ⊑ f ′d.
For ordinary Scott domains, compact elements of the exponential
are given by joins of finite, bounded sets of step-functions. Here,
given uniform-compact elements ui ∈ KDi (i = 1, 2), one can
show that the step-function

[u1 , u2] , λd ∈ D1 � if u1 ⊑ d then u2 else ⊥ (5)

is in K(D1 �D2); that a typical element of K(D1�D2) is the join
of an orbit-finite, bounded set of such step functions (so in view of
Theorem 8, K(D1 � D2) is countable, because KD1 and KD2

are); and that every element of D1 �D2 is a uniform-directed join
of elements in K(D1 � D2).

We give some examples of uniform-compact elements of expo-
nentials in Nsd associated with the flat domain of atomic names,

A⊥. The examples show that although A⊥ has a countably infinite
underlying set, it has very different uniform-compactness proper-
ties from the flat domain of natural numbers, N⊥ (e.g. the permu-

tation action on N is discrete: π · n , n). These examples will be
important for the development in Section 7.

Example 13 (name equality test). Let 2 = {true, false} be a
two-element, discrete nominal set. For each atomic name a ∈ A,
consider the function eqa : A⊥ � 2⊥ given by

eqa d ,











true if d = a

false if d ∈ A− {a}

⊥ if d = ⊥

(6)

for each d ∈ A⊥. Then using the notation from Definition 7 and (5),
one finds that eqa =

⊔

hull{a}{[a , true], [a′ , false]}, where a′ is
any atomic name not equal to a. Thus from the proof of Theorem 12
we have eqa ∈ K(A⊥ � 2⊥).

Example 14 (exists name). For each f ∈ A⊥ � 2⊥ define

existsAf ,











true if (∃a ∈ A) f a = true

false if (∀a ∈ A) f a = false

⊥ otherwise.

(7)

Picking any a ∈ A, one can show that existsA is equal to
⊔

hull∅{[[a , true] , true], [
⊔

hull∅{[a , false]} , false]}

and hence that existsA ∈ K((A⊥ � 2⊥) � 2⊥).

Example 15 (definite name description). Note that the functions
in Example 13 satisfy eqa = eqa′ ⇒ a = a′. Hence for each
f ∈ (A⊥ � 2⊥) we can define

theA f ,

{

a if f = eqa for some a ∈ A

⊥ otherwise.
(8)

Then picking any a ∈ A, one has theA =
⊔

hull∅{[eqa , a]} and
hence theA ∈ K((A⊥ � 2⊥) � A⊥).

Remark 16 (least fixed points). As for any cartesian closed cate-
gory, Theorem 12 allows us to model typed λ-calculus using nom-
inal Scott domains and equivariant, uniform-continuous functions.
Nsd also supports the usual interpretation of recursively defined
terms via least fixed points: for if D ∈ Nsd and f ∈ (D � D),
then {⊥, f ⊥, f2 ⊥, . . .} is a uniform-directed subset of D (each
element is supported by supp f ) whose join is fix f , the least fixed
point of f , by the usual Tarskian argument. Indeed for each nomi-
nal Scott domain D, the function assigning least fixed points gives
us a morphism in Nsd

fix : (D � D) → D. (9)

It is probably the case that Nsd has the ‘algebraic compactness’
properties (enriched over the category of nominal sets) needed to
model recursive definitions at the level of types; cf. [5, Section 5]
and [34, Section 3]. However, we have yet to check the details of
this.

6. Abstraction, concretion and restriction

The following result is the basis for giving denotational semantics
using nominal Scott domains to languages with name binding op-
erations, such as the one considered in Section 7.

Theorem 17. If D is a nominal Scott domain, then so is the
nominal poset [A]D from Definition 1. The operation of name
abstraction (a, d) 7→ 〈a〉d extends to a morphism A⊥×D → [A]D
in Nsd once we define 〈⊥〉d , ⊥.



Proof. If S ∈ Pfs([A]D) is uniform-directed, then so is {d ∈ D |
〈a〉d ∈ S} ∈ PfsD, for any a ∈ A. The same holds if S is finitely
supported and bounded from above. In both cases, picking a # S,
one finds that the join of S in [A]D is 〈a〉(

⊔

{d ∈ D | 〈a〉d ∈
S}). Thus, [A]D has uniform-directed joins and joins of bounded
finitely supported subsets, and its least element is 〈a〉⊥ (for any
a ∈ A). The above description of uniform-directed joins in [A]D
implies that 〈a〉u ∈ K(〈A〉D) if and only if u ∈ KD and (hence)
that [A]D is ω-algebraic. It also implies that each λd ∈ D � 〈a〉d
is uniform-continuous.

Algorithms that manipulate binders not only construct name
abstractions, they also pull them apart. For example, FreshML [35]
supports computation with name abstractions via a convenient
form of pattern matching that allows bound entities to be named
while guaranteeing invariance under α-equivalence. The mecha-
nism underlying this form of deconstruction of name abstractions
is most easily understood in terms of name ‘concretion’, to which
FreshML’s pattern matching can be translated. Given D ∈ Nsd

and e ∈ [A]D, for each a ∈ A with a # e there is a unique element
e@ a ∈ D satisfying e = 〈a〉(e@ a), called the concretion of the
name abstraction e at the atomic name a [14, Section 5]. Note that
this operation is partially defined: to form e@ a we require a # e,
meaning that a not in the support of e. For flat domains we will
make concretion a total, uniform-continuous function simply by
mapping the pairs where concretion is undefined to ⊥ ∈ D. How-
ever, for non-flat domains this is not possible, because in general
it does not give a monotone function. For example in [A](PfsA),
a′ ∈ supp〈a〉{a, a′} (assuming a 6= a′), but we cannot define the
concretion of 〈a〉{a, a′} at a′ to be the least element ∅ of PfsA

since 〈a〉{a} ⊑ 〈a〉{a, a′} and (〈a〉{a}) @ a′ = {a′} 6= ∅.
One way to deal with this partiality of concretion in a program-

ming language is to enhance its type system with ‘freshness as-
sumptions’ to ensure statically that name abstractions are only con-
creted at fresh names. This is the solution adopted by the original
version of FreshML [28] and is the one chosen by Winskel and
Turner in their language Nominal HOPLA [39, 40]. Later versions
of FreshML use a conventional type system and enforce fresh-
ness conditions dynamically via the use of local names in expres-
sions [35]—at the expense of purity [31]. We do the same with the
language introduced in the next section, but achieve purity via the
use of Odersky-style [24] local names rather than generative ones.
These will be modelled by some extra structure on nominal Scott
domains in the form of name restriction operations [27, Section 2.3]
that enable us to give morphisms [A]D×A⊥ → D in Nsd for the
operation of name concretion.

Definition 18 (uniform-continuous name restriction). A uni-
form-continuous name restriction operation on a nominal Scott
domain D is a morphism r : [A]D → D in Nsd satisfying the
structural properties: a # d ⇒ r〈a〉d = d and r〈a〉(r〈a′〉d) =
r〈a′〉(r〈a〉d) for all a, a′ ∈ A and d ∈ D.

We usually write r〈a〉d as a\d with the particular morphism
r understood from context. Using this morphism, as in Pitts [27,
Corollary 2.14] we can extend the partial operation of concretion
to a total equivariant function @ : [A]D × A⊥ → D satisfying

(〈a〉d) @ a = d
(〈a〉d) @ a′ = a\(a a′) · d if a 6= a′

(〈a〉d) @⊥ = ⊥.







(10)

The fact that this is uniform-continuous and hence determines a
morphism in Nsd follows from the description of uniform-directed
joins in [A]D in the proof of Theorem 17.

The following result shows that domains arising in the deno-
tational semantics of higher-order functional programming with

name abstractions (Section 7) all carry a uniform-continuous name
restriction operation. The theorem can be proved by extending the
results in Pitts [27, Section 2.3] from nominal sets to nominal Scott
domains.

Theorem 19. Every flat nominal Scott domain X⊥ has a uniform-
continuous name restriction operation satisfying

a\d =

{

d if a # d

⊥ if a ∈ supp d
(11)

for all a ∈ A and d ∈ X⊥. If D1, D2 ∈ Nsd have uniform-
continuous name restriction operations, their product D1×D2 has
one satisfying

a\(d1, d2) = (a\d1, a\d2) (12)

for all a ∈ A, d1 ∈ D1 and d2 ∈ D2. If D1, D2 ∈ Nsd and D2

has a uniform-continuous name restriction operation, then whether
or not D1 has one as well, the exponential D1 � D2 has such an
operation, satisfying

(a\f) d = a\(f d) if a # d (13)

for all d ∈ D1 and f ∈ D1 � D2. Finally, if D ∈ Nsd has
a uniform-continuous name restriction operation, then the name
abstraction domain [A]D has one satisfying

a\(〈a′〉d) = 〈a′〉(a\d) if a 6= a′
(14)

for all a, a′ ∈ A and d ∈ D.

Remark 20. In the above theorem, the name restriction operation
for exponentials is rather subtle. Property (13) at first seems like
only a partial specification for the function a\f , but in fact deter-
mines it uniquely, since it implies that for all d ∈ D

(a\f) d = a′\((a a′) · f) d for any a′ # (f, d) (15)

[see 27, Theorem 2.10]. It is easier to see that (14) uniquely defines
name restriction for name abstraction domains because given a ∈
A, we can always choose a representative for the equivalence class
〈a′〉d with a 6= a′.

Theorem 19 gives operations that adequately model locally
scoped names in programming languages. For example, in ret-
rospect one can see that Shinwell and Pitts [34] use the name re-
striction operation constructed as above for continuation domains
of the form (D � 1⊥) � 1⊥ to adequately model the operational
semantics of FreshML, which evaluates a local scope by generating
a name that is fresh for the current state. In this paper we use Oder-
sky’s functional theory of local names [24], which is modelled in
Nsd rather easily in view of the above theorem. The next section
introduces a language corresponding to a simply typed fragment of
FreshML [35], but with this kind of locally scoped name.

7. PNA: programming with name abstractions

The programming language PNA (Programming with Name Abs-
tractions) is basically Plotkin’s PCF [30] with names added. Like
PCF, PNA has arithmetic constructs, call-by-name higher-order
functions and fixed-point recursion. What distinguishes the two
languages is that PNA treats names as first-class citizens and has
constructs for locally scoping them, swapping them, testing them
for equality, and for name abstraction and concretion. To exercise
the use of name abstraction it also features a representative ‘nomi-
nal algebraic datatype’, namely a type for α-equivalence classes of
λ-terms. For example, when subst is the PNA expression defined
below, subst e1 a e2 computes the λ-term obtained by capture-
avoiding substitution of the λ-term represented by e1 for all free
occurrences of the variable named a in the λ-term represented by
e2.



τ ∈ Typ ::= types
bool | nat | τ × τ | τ � τ | name | term | δ τ

e ∈ Exp ::= expressions
x variable (x ∈ V)
T truth
F falsity
if e then e else e conditional
O number zero
S e successor
pred e predecessor
zero e zero test
(e , e) pair
fst e first projection
snd e second projection
λx : τ � e function abstraction
e e function application
fix e fixed-point recursion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a atomic name (a ∈ A)
νa. e local name
(e ⇋ e) e name swapping
e = e name equality test
V e variable term
A e e application term
L e lambda term
case e of (Vx � e | A xx � e | Lx � e) term case
αa. e name abstraction
e @ e name concretion

c ∈ Can ::= canonical forms
T | F | O | S c | (e , e) | λx : τ � e | a | V c | A c c | L c | αa. c

Figure 1. Syntax of PNA

subst , λy : term � λx : name �
fix (λ(f : term � term) � λy′ : term �

case y′ of
Vx1 � ifx1 = x then y else y′

| A y2 y
′
2 � A (f y2) (f y′

2)
| L z � L (αa. f(z @ a))).

Figure 1 gives the syntax of PNA. In the grammar for ex-
pressions, the part below the dotted line is what is added to
PCF. There are two kinds of identifier in the language: variables
x, y, z, f, . . . ∈ V and atomic names a, b, c, . . . ∈ A. The sets V of
variables and A of atomic names are disjoint and countably infinite.
Both kinds of identifier may be bound and the language’s binding
forms are λx : τ � , νa. , case e of (Vx � | Axx � |
Lx � ) and αa. . We identify expressions up to α-equivalence
of bound identifiers. For any expression e, we write fn(e) for its
finite set of free atomic names and fv(e) for its finite set of free
variables.

The reason for making a syntactic distinction between variables
and atomic names is that they behave differently. Various proper-
ties of PNA, such as its typing judgement, are preserved by the
operation of substitution of expressions for variables but are only
preserved by permutations of atomic names rather than more gen-
eral forms of substitution for names. The operation of simultaneous
substitution of expressions e1, .., en for distinct variables x1, .., xn

in an expression e is written as e[e1/x1, .., en/xn], where the
substitution avoids capture of both free variables and free atomic
names by the language’s binding forms. The operation of applying
a finite permutation π : A ∼= A to an expression e is written π · e. It

(x : τ ) ∈ Γ

Γ ⊢ x : τ

c = T | F

Γ ⊢ c : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ Γ ⊢ O : nat

Γ ⊢ e : nat

Γ ⊢ S e : nat

Γ ⊢ e : nat

Γ ⊢ pred e : nat

Γ ⊢ e : nat

Γ ⊢ zero e : bool

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1 , e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx : τ � e : τ � τ ′

Γ ⊢ e1 : τ � τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ ′

Γ ⊢ e : τ � τ

Γ ⊢ fix e : τ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈ A

Γ ⊢ a : name

a ∈ A Γ ⊢ e : τ

Γ ⊢ νa. e : τ

Γ ⊢ e1 : name Γ ⊢ e2 : name
Γ ⊢ e3 : τ

Γ ⊢ (e1 ⇋ e2) e3 : τ

Γ ⊢ e1 : name
Γ ⊢ e2 : name

Γ ⊢ e1 = e2 : bool

Γ ⊢ e : name

Γ ⊢ V e : term

Γ ⊢ e1 : term
Γ ⊢ e2 : term

Γ ⊢ A e1 e2 : term

Γ ⊢ e : δ term

Γ ⊢ L e : term

Γ ⊢ e : term Γ, x1 : name ⊢ e1 : τ
Γ, x2 : term, x′

2 : term ⊢ e2 : τ Γ, x3 : δ term ⊢ e3 : τ

Γ ⊢ case e of (Vx1 � e1 | Ax2 x
′
2 � e2 | Lx3 � e3) : τ

a ∈ A Γ ⊢ e : τ

Γ ⊢ αa. e : δ τ

Γ ⊢ e1 : δ τ Γ ⊢ e2 : name

Γ ⊢ e1 @ e2 : τ

Figure 2. PNA typing rules

is defined by recursing into all sub-expressions and applying π to
occurrences of atomic names. This is an action in the sense of Sec-
tion 2 and makes the set Exp of PNA expressions into a nominal
set. Since the elements of Exp are expressions up to α-equivalence,
support in this nominal set is given by the finite set of free names
of each expression.

PNA is a simply typed language. The grammar for types (Fig-
ure 1) extends that for PCF (in a version with products τ1 × τ2)
with a type name of names, a type term of λ-terms modulo α-
equivalence, and name abstraction types δ τ . The inductively de-
fined typing judgement Γ ⊢ e : τ (read as ‘in the environment Γ the
expression e has type τ ’) is defined in Figure 2 by the usual rules
for PCF and, below the dotted line, rules concerning names. The
typing environments Γ = {x1 : τ1, . . . , xn : τn} are finite func-
tions from variables to types that track occurrences of free variables
in e. Note that because there is only one sort of name, we do not
bother to add a component to Γ tracking occurrences of free atomic
names in e.

In Figure 3 we extend PCF’s usual rules for an inductively de-
fined big-step evaluation relation with the rules below the dotted



c = T | F | O | (e1 , e2) | λx : τ � e

c ⇓ c

e ⇓ c

S e ⇓ S c

e1 ⇓ T e2 ⇓ c

if e1 then e2 else e3 ⇓ c

e1 ⇓ F e3 ⇓ c

if e1 then e2 else e3 ⇓ c

e ⇓ S c

pred e ⇓ c

e ⇓ O

zero e ⇓ T

e ⇓ S c

zero e ⇓ F

e ⇓ (e1 , e2) e1 ⇓ c

fst e ⇓ c

e ⇓ (e1 , e2) e2 ⇓ c

snd e ⇓ c

e1 ⇓ λx : τ � e e[e2/x] ⇓ c

e1 e2 ⇓ c

e(fix e) ⇓ c

fix e ⇓ c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈ A

a ⇓ a

e ⇓ c a\c := c′

νa. e ⇓ c′

e1 ⇓ a1 e2 ⇓ a2

e3 ⇓ c

(e1 ⇋ e2) e3 ⇓ (a1 a2) · c

e1 ⇓ a e2 ⇓ a

e1 = e2 ⇓ T

e1 ⇓ a e2 ⇓ a′ a 6= a′

e1 = e2 ⇓ F

e ⇓ c

V e ⇓ V c

e1 ⇓ c1 e2 ⇓ c2

A e1 e2 ⇓ A c1 c2

e ⇓ c

L e ⇓ L c

e ⇓ V c e1[c/x1] ⇓ c′

case e of (Vx1 � e1 | · · · ) ⇓ c′

e ⇓ A c c′ e2[c/x2, c
′/x′

2] ⇓ c′′

case e of (· · · | Ax2 x
′
2 � e2 | · · · ) ⇓ c′′

e ⇓ L c e3[c/x3] ⇓ c′

case e of (· · · | Lx3 � e3) ⇓ c′
e ⇓ c

αa. e ⇓ αa. c

e1 ⇓ αa. c e2 ⇓ a′ a 6= a′ νa. (a a′) · c ⇓ c′

e1 @ e2 ⇓ c′

Figure 3. PNA evaluation rules

line that concern names. The evaluation rule for local names makes
use of the auxiliary definition in Figure 4. Thus the relation e ⇓ c
defines when a PNA expression e evaluates to canonical form c.
See Figure 1 for the grammar of canonical forms. As for PCF, we
only evaluate expressions that are variable-closed in the sense that
fv(e) = ∅, though they may contain free atomic names for evalua-
tion. This is because, unlike variables, atomic names are canonical
forms. We also choose to evaluate under name abstractions, so that
αa. e is in canonical form if and only if e is. This permits a rep-
resentation of α-equivalence classes of λ-terms in PNA that is as
simple as PCF’s representation of numbers: they are in bijection
with variable-closed canonical forms of type term. (It is certainly
possible to give a different operational semantics in which one does
not evaluate under name abstractions. The corresponding denota-
tional semantics would make more use of lifting than does the one
in Section 8.) To deconstruct name abstractions, PNA features an
operational version of the total concretion operation discussed in
Section 6. Its behaviour is given by the last rule in Figure 3 and
corresponds to property (10).

c = T | F | O | S c′

a\c := c a\(e1 , e2) := (νa. e1 , νa. e2)

a\λx : τ � e := λx : τ � νa. e

a 6= a′

a\a′ := a′

a\c := c′

a\V c := V c′
a\c1 := c′1 a\c2 := c′2

a\A c1 c2 := A c′1 c
′
2

a\c := c′

a\L c := L c′
a\c := c′ a 6= a′

a\αa′. c := αa′. c′

Figure 4. Partial operation of name restriction, a\c := c′

As for PCF, the PNA evaluation relation is easily seen to be
deterministic (e ⇓ c ∧ e ⇓ c′ ⇒ c = c′) and type-sound
(∅ ⊢ e : τ ∧ e ⇓ c ⇒ ∅ ⊢ c : τ ). It is also equivariant:

e ⇓ c ⇒ π · e ⇓ π · c. (16)

Remark 21 (Odersky-style local names). Evaluation of locally
scoped names νa. e makes use of Odersky’s functional theory of
local names [24], because that way of evaluating them fits the in-
tended model of PNA using nominal Scott domains. Scopes intrude
in a type-directed fashion, as can be seen in the partial operation of
name restriction on canonical forms a\c := c′ defined in Figure 4.
This operation is partial because a\a := c holds for no c. Thus, un-
like in Pitts [27], we choose to follow Odersky [24] and make νa. a
a stuck expression that does not evaluate to any canonical form and
whose denotation is ⊥. This has the advantage that there are no ex-
otic values (value-closed canonical forms) of type term—the only
values of that type correspond to α-equivalence classes of λ-terms.
The use of Odersky-style local names means that the operational se-
mantics of PNA is stateless, unlike the operational semantics of the
more usual generative version of νa. used in the ν-calculus [29].
At the same time, it is known to be as expressive as that version
in as much as there is an adequate translation from generative into
Odersky-style local names [19].

Definition 22 (contextual equivalence). As usual, a PNA context
C[ ] is an expression with a single sub-expression replaced by
the place-holder ‘ ’, and C[e] is the expression that results from
replacing by an expression e (possibly capturing free variables
and atomic names in e). Given well-typed expressions Γ ⊢ e : τ
and Γ ⊢ e′ : τ , we write Γ ⊢ e ∼=PNA e′ : τ and say that e
and e′ are contextually equivalent if for all contexts C[ ] for which
∅ ⊢ C[e] : bool and ∅ ⊢ C[e′] : bool hold, it is the case that
C[e] ⇓ T if and only if C[e′] ⇓ T.

Example 23. Although PNA contains the expressions of the ν-
calculus [29] as a subset, the two languages have different seman-
tics for local names—Odersky-style for PNA versus generative for
the ν-calculus. This affects properties of contextual equivalence in
the two languages. For example, if Γ, x : τ ⊢ e : τ ′, then

Γ ⊢ νa. λx : τ � e ∼=PNA λx : τ � νa. e : τ � τ ′
(17)

is valid. However, this is not always the case in the ν-calculus [29,
Example 2]. One can prove (17) by checking that this identity
holds in the denotational model developed in the next section and
then appealing to the computational adequacy result proved there
(Theorem 27). On the other hand, analogues of some ν-calculus
equivalences are also true for PNA, once one takes into account
the fact that, like PCF, PNA is call-by-name but the ν-calculus



is call-by-value. For example, here are call-by-name analogues of
equivalences in Pitts and Stark [29, Example 4]

∅ ⊢ νa. λx : name � (x = a) ∼=PNA

λx : name � ifx = x then F else F : name � bool
(18)

∅ ⊢ νa. νa′. λ(f : name � bool) � eq (f a) (f a′) ∼=PNA

λ(f : name � bool) � νa. if f a then T else T
: (name � bool) � bool.

(19)

Here eq : bool � bool � bool is an abbreviation for a
boolean-equality test defined using conditionals. In contrast to the
ν-calculus, where it takes some effort to prove equivalences like
(18) and (19), for PNA these properties are easily seen to hold
in the straightforward and computationally adequate denotational
semantics that we describe next.

8. Denotational semantics of PNA

For each PNA type τ , we define a nominal Scott domain JτK by
recursion on the structure of τ as follows.

• JboolK = 2⊥, the flat domain (cf. Remark 9) on a discrete
nominal set with two elements, 2 = {true, false}.

• JnatK = N⊥, the flat domain on the discrete nominal set of
natural numbers, N = {0, 1, 2, . . .}.

• Jτ × τ ′K = JτK × Jτ ′K, the product of nominal Scott domains.

• Jτ � τ ′K = JτK � Jτ ′K, the nominal Scott domain of finitely
supported, uniform-continuous functions (Theorem 12).

• JnameK = A⊥, the flat domain on the nominal set of atomic
names, A = {a, b, c, . . .}.

• JtermK = (Λα)⊥, the flat domain on the nominal set of α-
equivalence classes of λ-terms [14, Theorem 6.2],

Λα , {t ::= a | λa.t | t t}/=α (where a ∈ A). (20)

• Jδ τK = [A]JτK, the domain of name abstractions of the nominal
Scott domain JτK (Theorem 17).

Typing environments are interpreted as finite cartesian products:
J{x1 : τ1, . . . , xn : τn}K = Jτ1K×· · ·×JτnK. Finite tuples ρ ∈ JΓK
can be interpreted as partial functions from variables to domains
such that dom(ρ) = dom(Γ) and ρ(x) ∈ JΓ(x)K for all x ∈
dom(Γ). We call such partial functions Γ-environments. If ρ ∈
JΓK, x /∈ dom(Γ) and d ∈ JτK, then we write ρ[x 7→ d] for the
(Γ, x : τ)-environment that maps x to d and otherwise acts like ρ.

For each well-typed expression Γ ⊢ e : τ and Γ-environment
ρ ∈ JΓK we define an element JeKρ ∈ JτK satisfying the clauses

in Figure 5, by recursion over the structure of e.3 The clauses
for syntax constructs from PCF are analogous to the standard
denotational semantics of PCF in Scott domains. The functions
π1 and π2 in the clauses for fst e and snd e are the first and
second projection functions for pairs. fix in the clause for fix e
is the least fixed point function (9). The clauses below the dotted
line in Figure 5 are for the new syntactic constructs of PNA. In
the clauses involving expressions of type term, we use [t]α to
denote the α-equivalence class of the syntax tree t of a λ-term. We
use the concretion function from (10) in the clause for concretion
expressions e1 @ e2. The clause for νa. e makes use of the uniform-
continuous name restriction operation that each JτK has by virtue
of Theorem 19. Note that the side conditions in the clauses for
νa. e and αa. e are always satisfiable as we identify expression up
to α-equivalence. One can reformulate these clauses without side

3 Strictly speaking, it is by α-structural recursion [26] since we identify
expressions up to α-equivalence of bound identifiers.

JxKρ = ρ x

JTKρ = true JFKρ = false

Jif e1 then e2 else e3Kρ =











Je2Kρ if Je1Kρ = true

Je3Kρ if Je1Kρ = false

⊥ otherwise

JOKρ = 0

JS eKρ =

{

n+ 1 if JeKρ = n ∈ N

⊥ otherwise

Jpred eKρ =

{

n if JeKρ = n+ 1 ∈ N

⊥ otherwise

Jzero eKρ =











true if JeKρ = 0 ∈ N

false if JeKρ = n+ 1 ∈ N

⊥ otherwise

J(e1 , e2)Kρ = (Je1Kρ, Je2Kρ)

Jfst eKρ = π1(JeKρ) Jsnd eKρ = π2(JeKρ)

Jλx : τ � eKρ = λd ∈ JτK. JeKρ[x 7→ d]

Je1 e2Kρ = Je1Kρ (Je2Kρ)

Jfix eKρ = fix(JeKρ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JaKρ = a

Jνa. eKρ = a\(JeKρ) if a # ρ

J(e1 ⇋ e2) e3Kρ =
{

(a1 a2) · (Je3Kρ) if JeiKρ = ai ∈ A (i = 1, 2)

⊥ otherwise

Je1 = e2Kρ =

{

eqa(Je2Kρ) if Je1Kρ = a ∈ A

⊥ otherwise

JV eKρ =

{

[a]α if JeKρ = a ∈ A

⊥ otherwise

JA e1 e2Kρ =

{

[t1 t2]α if JeiKρ = [ti]α ∈ Λα (i = 1, 2)

⊥ otherwise

JL eKρ =

{

[λa.t]α if JeKρ = 〈a〉[t]α ∈ [A]Λα

⊥ otherwise

Jcase e of (Vx1 � e1 | Ax2 x
′
2 � e2 | Lx3 � e3)Kρ =



















Je1Kρ[x1 7→ a] if JeKρ = [a]α
Je2Kρ[x2 7→ [t]α, x

′
2 7→ [t′]α] if JeKρ = [t t′]α

Je3Kρ[x3 7→ 〈a〉[t]α] if JeKρ = [λa.t]α
⊥ otherwise

Jαa. eKρ = 〈a〉(JeKρ) if a # ρ

Je1 @ e2Kρ = (Je1Kρ) @ (Je2Kρ)

Figure 5. PNA denotational semantics



conditions [cf. 27, Figure 4]

Jνa. eK = a\(λρ ∈ JΓK. JeKρ) (21)

Jαa. eK = a\(λρ ∈ JΓK. 〈a〉(JeKρ)) (22)

by appealing to the slightly subtle properties of the name restriction
operation for exponential domains (Remark 20).

Notation 24. For the empty typing environment ∅, there is a unique
∅-environment, ρ0. Given a variable-closed expression ∅ ⊢ e : τ ,
we simply write JeK for JeKρ0.

Using the developments from Sections 5 and 6 one can prove
the following results.

Lemma 25. The denotation of any well-typed PNA expression
Γ ⊢ e : τ is a well-defined, finitely supported and uniform-
continuous function JeK : JΓK → JτK.

Lemma 26 (PNA soundness). If e ⇓ c, then JeK = JcK.

Proof. The proof is by rule induction for ⇓, using the following
properties of the denotational semantics whose proofs we omit.

• Substitution lemma If Γ ⊢ e : τ and Γ, x : τ ⊢ e′ : τ ′,
then Γ ⊢ e′[e/x] : τ ′ holds and for all ρ ∈ JΓK we have
Je′[e/x]Kρ = Je′Kρ[x 7→ JeKρ].

• Equivariance lemma π · JeK = Jπ · eK.
• Restriction lemma If a\c := c′ with c and c′ variable-closed

canonical forms of type τ , then the uniform-continuous name
restriction operation defined on JτK as in Theorem 19 satisfies
a\JcK = Jc′K.

The following result allows one to establish PNA contextual
equivalences by proving equality of denotations.

Theorem 27 (PNA computational adequacy). Given Γ ⊢ e : τ
and Γ ⊢ e′ : τ , if JeK = Je′K ∈ JΓK � JτK, then Γ ⊢ e ∼=PNA e′ : τ .

Proof. It is not hard to see that the denotational semantic is com-
positional, in the sense that JeK = Je′K ⇒ JC[e]K = JC[e′]K. So in
view of Lemma 26 it suffices to show that if e is a variable-closed
expression of type bool, then

JeK = true ⇒ e ⇓ T. (23)

We prove this by devising a suitable logical relation

d ⊳τ e (d ∈ JτK, ∅ ⊢ e : τ ) (24)

between the semantics and the syntax of PNA. (See Streicher
[38, Chapter 4] for a good exposition of this method of proving
computational adequacy for the Scott domain model of PCF.) The
definition of ⊳τ is by recursion on the structure of the type τ :

d ⊳γ e , d = ⊥ ∨ (∃c) e ⇓ c ∧ JcK = d

for γ = bool, nat, name, term

(d1, d2) ⊳τ1×τ2 e , d1 ⊳τ1 fst e ∧ d2 ⊳τ2 snd e

d ⊳τ1�τ2 e , (∀d1, e1) d1 ⊳τ1 e1 ⇒ d d1 ⊳τ2 e e1

d ⊳δ τ e , ( Na) d@ a ⊳τ e @ a.

The definition is standard except for the last clause, which is for
name abstraction types. There we use the freshness quantifier ( Na)
of nominal logic [25]. Thus d ⊳δ τ e holds if and only if d @ a ⊳τ
e@a holds for some a # (d, e), or equivalently, for any a # (d, e).

The proof that this logical relation is closed under restriction,
abstraction and concretion

d ⊳τ e ⇒ (∀a) a\d ⊳τ νa. e (25)

d ⊳τ e ⇒ (∀a) 〈a〉d ⊳δ τ αa. e (26)

d ⊳δ τ e ⇒ (∀a) d@ a ⊳τ e @ a (27)

is not straightforward, and we omit the details here. Armed with
those properties, the fundamental property of the logical relation
follows by induction on the structure of expressions; in particular
we get ∅ ⊢ e : τ ⇒ JeK ⊳τ e. This, combined with the definition
of ⊳bool yields (23).

Using Theorem 27 we can prove many contextual equivalences
in PNA, such as those in Example 23, in a straightforward manner
via the denotational semantics. For example (18) is proved by
the following argument. Since we identify expressions up to α-
equivalence, for any given a′ ∈ A we can pick a representative
expression νa. λx : name � (x = a) such that a 6= a′, then

Jνa. λx : name � (x = a)Ka′

= (a\Jλx : name � (x = a)K) a′
by definition in Figure 5

= a\(Jλx : name � (x = a)K a′) by (13), since a 6= a′

= a\false as a 6= a′

= false

= Jλx : name � ifx = x then F else FK a′.

Similarly Jνa. λx : name � (x = a)K⊥ = ⊥ = Jλx : name �
ifx = x then F else FK⊥. Hence Jνa. λx : name � (x = a)K =
Jλx : name � ifx = x then F else FK and so (18) holds by
Theorem 27. To prove example (19) one can combine the definition
in Figure 5 with the fact that if a, a′ # f ∈ (A⊥ � 2⊥)� 2⊥, then
f a = f((a a′) · a′) = (a a′) · (f a′) = f a′ (since f a′ ∈ 2⊥). In
contrast to the situation here, properties like (18) and (19) for the
ν-calculus, which uses generative rather than Odersky-style local
names, can be hard to establish whether one uses operational or
denotational techniques. See Tzevelekos [43], which focusses on
an equivalence like (19).

9. Full abstraction for PNA
+

Plotkin [30] famously proves that the Scott domain model of PCF
is computationally adequate, but not fully abstract: equality of de-
notations implies, but is not implied by, PCF contextual equiva-
lence. Furthermore, he shows that the Scott model becomes fully
abstract once one extends PCF with a parallel-or construct.

Moving to nominal Scott domains and PNA, Plotkin’s negative
result can certainly be extended to show that the converse of Theo-
rem 27 fails to hold. We do not yet know what happens if one adds
just parallel-or to PNA (see Section 10). However, adding not only
parallel-or, but also operational versions of the uniform-compact
functionals in Examples 14 and 15, we will show that the nominal
Scott domain model is fully abstract for contextual equivalence in
the extended language.

Note that this section does not give a full abstraction result
for the more common generative local names used for example
in FreshML or the ν-calculus. Generative names can be modelled
adequately in Nsd through a continuation monad as described at
the end of Section 6, but full abstraction fails in this model, because
of the results of Stark [36, Page 66].

Definition 28. The language PNA+ is obtained by extending PNA
with expressions for parallel-or, for existentially quantifying over
name (‘there exists some x : name such that. . . ’) and for form-
ing definite descriptions over name (‘the unique x : name such
that. . . ’). The syntax, typing and evaluation rules for this extension
are given in Figure 6. Contextual equivalence for the extended lan-
guage Γ ⊢ e ∼=PNA+ e′ : τ is defined in the same way as it is for
PNA in Definition 22.

Remark 29. The addition of existential quantification and definite
description is mainly motivated by the need for them in our proof of



e ::= expressions
· · · (as for PNA)
e por e parallel-or
exx. e existential name quantification
thex. e definite name description

Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 por e2 : bool

Γ, x : name ⊢ e : bool

Γ ⊢ exx. e : bool

Γ, x : name ⊢ e : bool

Γ ⊢ the x. e : name

e1 ⇓ T

por e1 e2 ⇓ T

e2 ⇓ T

e1 por e2 ⇓ T

e1 ⇓ F e2 ⇓ F

e1 por e2 ⇓ F

e[a/x] ⇓ T

exx. e ⇓ T

a′ # e (∀b ∈ fn(e) ∪ {a′}) e[b/x] ⇓ F

exx. e ⇓ F

e[a/x] ⇓ T a′ # (e, a)
(∀b ∈ (fn(e)− {a}) ∪ {a′}) e[b/x] ⇓ F

the x. e ⇓ a

Je1 por e2Kρ = por (Je1Kρ) (Je2Kρ)

Jex x. eKρ = existsA(Jλx : name � eKρ)

Jthe x. eKρ = theA(Jλx : name � eKρ)

Figure 6. PNA+

full abstraction (Theorem 30). Existential quantification for num-
bers (rather than, as here, for names) occurs in Plotkin’s original
PCF paper [30], and definite description has a long history in logic,
but it is harder to motivate from a programming language perspec-
tive. In fact, a definite description functional for numbers rather
than for names is not computable. The computability of ex x. e and
thex. e provide an example of the phenomenon of ‘finite modulo
symmetry’ mentioned in the Introduction. For example, to prove
exx. e ⇓ F, we just have to pick one of the infinitely many atomic
names a′ that do not occur free in e and then show e[a′/x] ⇓ F and
e[b/x] ⇓ F for each of the finitely many atomic names b that do
occur free in e. This works because the equivariance property (16)
of evaluation implies that if e[a′/x] ⇓ F, then e[a′′/x] ⇓ F holds
for any a′′ not occurring free in e.

The denotational semantics of PNA+ expressions is given by
extending the definition in Figure 5 with the clauses at the bottom
of Figure 6. Here por ∈ K(2⊥ � 2⊥ � 2⊥) is the usual parallel-or
function satisfying

por d d′ =











true if d = true or d′ = true

false if d = false and d′ = false

⊥ otherwise;

existsA ∈ K((A⊥ � 2⊥) � 2⊥) is as in Example 14, and theA ∈
K((A⊥ � 2⊥) � A⊥) is as in Example 15.

Theorem 30 (full abstraction for PNA+). For all well-typed
expressions Γ ⊢ e : τ and Γ ⊢ e′ : τ in PNA+, we have

JeK = Je′K ∈ JΓK � JτK ⇔ Γ ⊢ e ∼=PNA+ e′ : τ. (FAτ )

The sketch of the proof of this result occupies the rest of this
section.

The extension of Theorem 27 to PNA+ is straightforward and
gives us the left-to-right implication in (FAτ ). Establishing the re-

verse implication inevitably leads to an investigation of the defin-
ability of elements of the nominal Scott domain model by PNA+

expressions. However, our proof of the right-to-left implication in
(FAτ ) does not exactly follow any of the proof patterns linking
definability with full abstraction surveyed by Curien [10]. In par-
ticular, we only know that the uniform-compact elements of the
nominal Scott domain JτK are definable in PNA+ for certain types
that avoid the use of function types τ1 � τ2 in which the nominal
Scott domain Jτ2K might contain elements with non-empty support.
So τ2 = nat is OK, but τ2 = name is not, for example. This leads
us to make the following definition.

Definition 31 (simple types). Let Styp ⊆ Typ be the subset of
the collection of types (Figure 1) given by the following grammar:

σ ::= nat | name | σ × σ | σ � nat.

The following lemma is the key to the usefulness of simple
types. It is where the presence of ‘thex. e’ expressions in PNA+

gets used.

Lemma 32. Any type τ is a PNA+-definable retract of a simple
type σ ∈ Styp, meaning that there are closed PNA+ expressions
∅ ⊢ i : τ � σ and ∅ ⊢ r : σ � τ with Jλx : τ � r (i x)K = idJτK.

Proof. First note that because name abstraction satisfies a form of
η-expansion (Jαa. (e @ a)K = JeK, if a /∈ fn(e)), each δ τ is a
PNA+-definable retract of name � τ (PNA-definable, in fact), via

i , λx : δ τ � λy : name � x @ y (28)

r , λ(f : name � τ ) � αa. f a (29)

(cf. [27, Theorem 2.13]). Secondly, using ‘thex. e’ expressions,
we also have that name itself is a PNA+-definable retract of
name � nat, via

i , λx : name � λy : name � ifx = y then O else S O

r , λ(f : name � nat) � thex. zero (f x).

Thirdly, again using ‘the x. e’ expressions, one can also show
that term is a PNA+-definable retract of nat × (name � nat)
(proof omitted). Finally, it is not hard to see that bool is a PNA+-
definable (actually PCF-definable) retract of nat.

Using these four facts, one can proceed by induction on the
structure of types to show that each τ is a PNA+-definable retract
of some simple type.

Lemma 33. If τ is a PNA+-definable retract of σ, then full ab-
straction at σ implies full abstraction at τ , i.e. (FAσ) ⇒ (FAτ ).

Proof. Given i and r as in Lemma 32, suppose (FAσ) holds and
that Γ ⊢ e ∼=PNA+ e′ : τ , then we have Γ ⊢ i e ∼=PNA+ i e′ : σ
by compositionality of ∼=PNA+ . Thus by (FAσ), for any ρ ∈ JΓK
we have JiK(JeKρ) = Ji eKρ = Ji e′Kρ = JiK(Je′Kρ). We know
that JiK is injective since it has a left inverse JrK, and hence (∀ρ ∈
JΓK) JeKρ = Je′Kρ. Thus JeK = Je′K ∈ JΓK � JτK.

Combining these two lemmas, to prove Theorem 30 it suffices
to show that (FAσ) holds for all simple types σ ∈ Styp. As sur-
veyed in Curien [10], this follows from definability of all uniform-
compact elements of the nominal Scott domains JσK. That is, for all
u ∈ KJσK we wish to prove that u = JeK for some variable-closed
PNA+ expression ∅ ⊢ e : σ.

Remark 34 (definability of uniform-compact elements). Are all
the uniform-compact elements of the nominal Scott domain JτK
definable in PNA+, for any type τ? We introduced simple types
because we did not find a way to prove such a definability result at
all types. We succeed in showing uniform-compact definability at



simple types essentially because the codomains of simple functions
are restricted to nat, which makes life much easier in this setting.
If all the definable retracts used in our proof of Theorem 30 were
actually definable embedding-projection pairs (in the sense that
Jλx : σ � i (r x)K ⊑ idJσK holds), then uniform-compact defin-
ability at simple types would immediately imply uniform-compact
definability at any type.4 Unfortunately for name abstraction types,
(28) and (29) do not form an embedding-projection pair. There re-
mains the possibility that embedding-projection pairs as above can
be used to show uniform-compact definability at all types for a sim-
pler language without name abstraction, such as the λν-calculus of
Odersky [24] extended with fixed points.

The proof of uniform-compact definability at simple types in
principle follows the structure of the traditional proof by Plotkin
[30]. A modern account of this proof can be found in Streicher’s
book [38]. However, in our nominal setting many uses of finite
subsets in the traditional proof are replaced by uses of orbit-finite
subsets and their presentation as orbit-finite hulls (Theorem 8). The
definition of hullAF involves existential quantification over finite
permutations of A, and for the definability proof we need to reduce
this to existential quantification over elements of A. This is where
the presence of exx. e expressions in PNA+gets used (along with
a traditional use of por) to prove the following two crucial lemmas.
Neither is trivial to prove. In particular Lemma 36 works by a subtle
case distinction over all the different ways the atomic names in the
supports of u and u′ can overlap.

Lemma 35.
⊔

hullA{[u , true]} isPNA+-definable for every σ ∈
Styp, u ∈ KJσK and A ⊆f A.

Lemma 36. Suppose that σ ∈ Styp satisfies

• for all v, v′ ∈ KJσK that do not have an upper bound in JσK,

[v , true] ⊔ [v′ , false] is PNA+-definable.

Then
⊔

hullA{[u , true], [u′ , false]} is PNA+-definable for any
u, u′ ∈ KJσK and A ⊆f A satisfying:

• for all finite permutations π : A ∼= A satisfying π # A (see
Definition 7), it holds that u and π · u′ do not have an upper
bound in JσK.

Using these two lemmas one can show by simultaneous induc-
tion on the structure of σ ∈ Styp that

• u and [u , true] are definable for all uniform-compact elements
u ∈ KJσK, and

• [u , true] ⊔ [u′ , false] is definable whenever u, u′ ∈ KJσK are
uniform-compact elements that do not have an upper bound in
JσK.

Most of the work lies in the case for functions types, which for
simple types are of the form, σ � nat. By Theorem 8 and 12 each
uniform-compact element u of Jσ � natK can be represented by
u =

⊔

hullAF for some A ⊆f A, F = {[u1 , n1], .., [uk , nk]},
u1, .., uk ∈ KJσK and n1, .., nk ∈ N. One has to perform another
induction on the size of F and make a case distinction based on the
existence of [u′ , n′], [u′′ , n′′] ∈ F such that for all π # A the
compact elements u′ and π ·u′′ have no upper bound in JσK. Using
Lemmas 35 and 36 the proof goes through following the structure
of Streicher [38, Theorem 13.9], thereby showing full abstraction
for PNA+.

10. Open problems

1. Failure of full abstraction in the nominal Scott domain model.
Is Nsd fully abstract for just PNA+por? Is it necessary to add

4 Thanks to a referee for pointing this out.

both exx. e and the x. e to PNA+por in order to obtain full
abstraction?

We do not yet have examples of contextually equivalent expres-
sions in PNA+por, PNA+por+ex, or PNA+por+the that
have different denotations in Nsd. Probably the method of log-
ical relations can be adapted to establish such contextual equiv-
alences, but we have yet to pursue this.

2. Is there a fully abstract model of PNA based on games in
nominal sets?

Just as PCF is of more interest from a programming point of
view than PCF+por, we regard PNA (suitably extended with
recursive types) as a ‘pure’ version of FreshML that is poten-
tially useful for functional programming with syntactical data
involving binders. Game semantics provided an interesting so-
lution for the original full abstraction problem for PCF [4, 16],
and its nominal version has provided computationally useful,
fully abstract models of generative local state [3, 18, 23, 41].
Can nominal game semantics provide a similar thing for PNA?

3. Is there a nominal Scott domain semantics for the form of
nominal computation embodied by the Nλ language [6]?

With Nλ, Bojańczyk et al. extend the simply-typed λ-calculus
with a collection type—representing orbit-finite subsets (Sec-
tion 2) via a syntax for orbit-finite hulls (Definition 7).5 It is
natural to consider adding fixed point recursion to this language,
with a denotational semantics using nominal domains rather
than nominal sets. The denotational semantics of such an exten-
sion of Nλ will require the development of orbit-finite power
domains FnD in Nsd, whose uniform-compact elements are
orbit-finite subsets of the uniform-compact elements of D.

4. What recursive domain equations can be solved in Nsd?

In his thesis, Shinwell [33, Section 4.5] shows that the tradi-
tional method for constructing minimally invariant solutions for
locally continuous functors of mixed variance can be applied to
the simple notion of nominal domain given by nominal posets
with joins of finitely supported ω-chains. This can be extended
to udcpos and we expect it can also be used for nominal Scott
domains, but we have yet to check the details. An interesting
alternative approach is to develop a nominal version of Scott’s
information systems [32] and construct solutions for recursive
domain equations via inductively defined nominal sets of in-
formation tokens. We have begun to develop such a theory of
nominal Scott information systems in which the role of finite
sets is replaced by orbit-finite nominal sets [unpublished]. From
a logical point of view [2], nominal information systems are
presentations of non-trivial nominal posets with all orbit-finite
meets, rather than just finite meets. We expect this machinery
can be used to good effect for the orbit-finite power domain
construct mentioned above, as well as for a version for nominal
Scott domains of Moggi’s monad for dynamic allocation [21,
Section 4.14] featuring a freely generated uniform-continuous
name restriction operation [27, Remark 2.8].

11. Conclusion

The results in this paper provide further evidence for how a seman-
tic theory (domain theory in this case) is enhanced by using nom-
inal sets: we gain the ability to model constructs involving names
and their symmetries while preserving many aspects of the classi-
cal theory. The complications arising from the use of nominal sets

5 Their paper [6] is concerned with general ‘Fraı̈ssé nominal sets’. Here we
restrict our attention to the ‘equality symmetry’ and nominal sets in the
original sense.



are feasible and somehow orthogonal to the other developments. At
the same time, their use gives access to new constructs that are far
from trivial. This is the case for the notion of orbit-finite subset,
which formalizes the important idea of finiteness modulo symme-
try within nominal sets. We agree with Bojańczyk et al. [6] that
this is an important notion with many potential applications. Here
we have used it to develop a nominal domain theory that, via our
full abstraction result, has a good fit with higher-type computation
involving local names and name abstractions.
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