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Encoding abstract syntax without fresh names
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Abstract This paper introduces a variant of nominal abstract syntax in which bind-

able names are represented by normal meta-variables as opposed to a separate class

of globally fresh names. Distinct meta-variables can be instantiated with the same

concrete name, which we call aliasing. The possible aliasing patterns are controlled by

explicit constraints on the distinctness (freshness) of names. This approach has already

been used in the nominal meta-programming language αML. We recap that language

and develop a theory of contextual equivalence for it. The central result of the paper is

that abstract syntax trees (ASTs) involving binders can be encoded into αML in such

a way that α-equivalence of ASTs corresponds with contextual equivalence of their

encodings. This is novel because the encoding does not rely on the existence of globally

fresh names and fresh name generation, which are fundamental to the correctness of

the pre-existing encoding of abstract syntax into FreshML.

Keywords Meta-programming · Alpha-equivalence · Nominal abstract syntax

1 Introduction

This paper is about the representation of names in nominal abstract syntax (NAS) [12,

10]. NAS aims to model informal mathematical practice, where it is natural to write

down bound names using some explicit symbol. For example, theoreticians would tend

to write down the K combinator of the λ-calculus [1] in an explicitly named form such

as λx. λy. x as opposed to a nameless de Bruijn representation [2] such as λλ 2.
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Object-level names are typically represented as elements drawn from some count-

ably infinite set, which we will call Name. We refer to them indirectly via the meta-

variable n. It is common practice to assume that these meta-variables range permu-

tatively over Name, i.e. that syntactically distinct meta-variables n1 and n2 always

refer to distinct names. This is referred to by Gabbay as the permutative convention

[11]. We feel it is important to highlight these assumptions which are taken for granted

when dealing with binders in an explicitly named form, as we will remove them later

in the paper. Recalling the K combinator example above, many would automatically

assume that x and y represent distinct names.

In this paper we will discuss a generalisation of traditional nominal techniques

which we refer to as non-permutative nominal abstract syntax (NPNAS), with partic-

ular emphasis on its interplay with program equivalence. To motivate this, consider

the case of instantiating first-order schematic patterns which involve meta-variables

x, y etc. In first-order abstract syntax, syntactically different meta-variables can be

instantiated with the same value. For example, the schematic pattern (x , y) could be

instantiated to (2 , 3) using the substitution [x 7→ 2, y 7→ 3] but it could also be instan-

tiated to (3 , 3) by the substitution [x 7→ 3, y 7→ 3]. We refer to this phenomenon as

aliasing and say that x and y are aliased here. Note, however, that the pattern (x , x)

cannot be instantiated to (2 , 3) because all occurrences of x must be instantiated

consistently.

Now consider the case where the schematic patterns may involve bindable names.

In the traditional NAS approach, bindable names are represented using a different

class of meta-variables (n here) which range permutatively over Name. In NPNAS

we remove the permutative convention on bindable names and represent them using

normal meta-variables x, y etc. which may be aliased. Instead of the permutative

convention we maintain explicit distinctness information about names in a separate

constraint environment. NPNAS has greater expressive power than traditional NAS

because aliasing is possible. This means that each schematic pattern may denote a set

of different ASTs, depending on the topology of aliasing between its bound names.

However, we can simulate permutative behaviour over a known finite set of names

by adding explicit distinctness constraints between those names. For example, the

schematic NPNAS equivalent of the K combinator mentioned above is

Lam <x>(Lam <y>(Var x)) (1)

where we use a standard nominal datatype declaration for λ-terms (introduced in

Section 2.1 below). However, this could represent either or both of the distinct α-

equivalence classes

(i) [Lam <n>(Lam <n′
>(Varn))]α (ii) [Lam <n>(Lam <n>(Varn))]α

depending on whether we assert that x 6= y (just (i)), x = y (just (ii)), or leave it

unspecified (both (i) and (ii)). We recall that the names n and n′ follow the permuta-

tive convention, so we know that n 6= n′ and hence the intended meaning of (1) is the

α-equivalence class (i).

We have practical experience of the NPNAS approach in the context of the func-

tional logic programming language αML [19]. This is a call-by-value, higher-order,

typed meta-programming language. It includes features for implementing α-equivalence-

respecting inductive definitions involving binders, such as the ability to create and de-

construct name abstractions, support for generating names and for aliasing, constraints
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of equality and name freshness, and fair proof-search by non-deterministic branching.

The intended application of αML is as an executable meta-language for compiling a

semantic description of an object-language into a prototype. We will present a brief

overview of the language in Section 2.

Remark 1 (Practical motivation for NPNAS) We developed the NPNAS technique for

use in αML to overcome incompleteness issues with proof-search. This situation is

similar to that encountered in the nominal logic programming language αProlog [6,

Section 5.3] if the tractable nominal unification algorithm [34] is used for matching

against clauses. In this case, there are some programs for which all solutions cannot

be found because the system does not take equivariance into account (such as [7,

Example 5.17]). Various solutions have been proposed, such as imposing syntactic

restrictions on αProlog programs [33,7] or moving to the more powerful equivariant

unification algorithm [5]. Neither is ideal: in particular, the equivariant unification is

rather involved and complicated to implement.

By abandoning the permutative convention altogether in αML we obtain a simpler

language and constraint problem. Both this constraint problem and the equivariant

unification problem are known to be NP-complete (see [3] and [19, Section 3] for proofs).

Thus they are both polynomial-time reducible to each other and hence our constraint

problem is equivalent to equivariant unification. We showed in [19] that proof-search

in αML is complete for a simple yet powerful model of inductive definitions involving

binders. Hence, the motivation for adopting NPNAS comes from the (constraint) logic

programming side of αML. In this paper we focus on program equivalence which is

largely concerned with the functional programming aspects of the language, so we will

not discuss logic programming in great detail.

In [19] we claimed that αML correctly implements names and binding modulo α-

equivalence. To back up this claim we must show a correctness result for αML akin to

the following theorem for the FreshML language, which was proved in [30] and [27].

Theorem 1 (Correctness of representation for FreshML.) Two λ-terms are α-

equivalent, t1 =α t2, iff their representations [t1]F and [t2]F are contextually equivalent

clased values of type term, i.e. can be used interchangeably in any well-typed Fresh

Objective Caml program without affecting the observable results of program execution.

⊓⊔

FreshML is a prime example of the nominal approach. It extends a higher-order

typed functional programming language with convenient constructs for encoding names

and binders, where names n are assumed to follow the permutative convention. Names

are introduced by fresh name generation. Evaluating the fresh keyword returns a

name which has never been seen before and hence may be assumed to be distinct

from all other names in the evaluation context. Abstractions are created using a term-

former which takes a name n and a value v and produces a value <n>v denoting the

object-level binding of the name n in v. An abstraction <n>v in FreshML can only

be deconstructed by generative unbinding [27], which generates another fresh name n′

and returns a freshened copy v[n′/n] of the abstraction body, along with n′ itself. The

analogue of Theorem 1 for the αML meta-language is by no means obvious, because

the αML does not assume the permutative convention and does not provide a facility

for fresh name generation, which is a crucial part of the encoding of abstract syntax

into FreshML. Therefore, we will need a different encoding of abstract syntax in terms

of the facilities available in αML.
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The rest of the paper is organised as follows. In Section 2 we give a brief overview of

the αML meta-language. The technical contribution of the paper begins in Section 3,

where we present a formal notion of abstract syntax trees with binders and describe an

encoding of these into αML. In Section 4 we develop a theory of contextual equivalence

between αML expressions and in Section 5 we prove the central result of the paper

concerning the representation of ASTs with binders in αML. We highlight related and

future work in Section 6 and conclude in Section 7.

2 The αML language

In this section we give a brief overview of the syntax, type system and operational

semantics of the αML meta-language, which was introduced in [19].

2.1 Types

Object-language abstract syntax is modelled using recursive datatype definitions. These

extend the algebraic datatypes of functional programming languages such as Standard

ML [22] to carry information about name-binding. A datatype declaration Σ in αML

consists of

– a finite set NΣ of name sorts N ;

– a finite set DΣ of data sorts D (disjoint from NΣ); and

– a finite set CΣ of constructors K:T → D, where the argument types T ∈ TyΣ are

generated by the following grammar.

T ∈ TyΣ ::= E (equality types)

D (data sorts)

T * · · · * T (product types)

T → T (function types)

prop (type of semi-decidable propositions).

Equality types, E ∈ EtyΣ , are a subset of αML types which have a decidable notion

of equality between their inhabitants. These are generated by the following grammar.

E ∈ EtyΣ ::= S (nominal data sorts)

N (name sorts)

[N]E (abstraction types)

E * · · · *E (product types)

unit (unit type).

The meta-variable S ranges over nominal data sorts, which are the subset SΣ ⊆ DΣ

such that if S ∈ SΣ then all constructors for S have types K:E → S, i.e. they take

equality types as arguments. This stratification is necessary statically to ensure that

we only encounter decidable constraints between values during the evaluation of αML

programs. In particular, constraints between higher-order values would be undecidable

[13], so E → E is not an equality type.

The novel types are the name sorts, abstraction types and the prop type. The

only values of name sorts N are meta-variables which denote object-level bindable

names of that sort. The abstraction type [N]E represents the object-level binding of
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Values, v ::= x,f (variable)
K v (constructor application)
() (unit)
(v, . . . ,v) (tuple)
fun f(x:T):T = e (recursive function)
T (success)
<v>v (name abstraction)

Constraints, c ::= v = v (equality constraint)
v # v (freshness constraint)

Expressions, e ::= v (value)
let x = e in e (let binding)
v v (function application)
case v ofK x -> e | · · · | K x -> e (case expression)
v. i (projection)
c (constraint)
Ex:E. e (existential)

e || e (non-deterministic branch)

Frame stacks, F ::= Id (empty stack)
F ◦ (x. e) (non-empty stack).

Fig. 1 αML syntax

a (single) name of sort N in a term of type E. Note that the body of an abstraction

must always be an equality type—this is necessary for constraints between abstractions

to be decidable. This restriction does not apply in FreshML because abstractions are

deconstructed using name-swapping rather than constraint solving. Finally, expressions

of type prop correspond to proof-search and constraint solving computations from the

world of constraint logic programming (CLP) [17]. We call these semi-decidable because

the denotations of these relations are not recursively enumerable in the general case.

A pleasing consequence of this design is that the nominal signatures of [34] corre-

spond to the subset of αML datatype declarations in which all data sorts are actually

nominal data sorts. For example, the nominal signature for untyped λ-terms corre-

sponds to an αML datatype definition which contains a single name sort var and a

single nominal data sort term and has three constructors, whose types are as follows.

Var : var → term (variables)

App : term * term → term (applications)

Lam : [var]term → term (λ-abstractions).

Henceforth we use this datatype declaration to encode λ-terms into αML.

2.2 Syntax

Fix a countably infinite set Var of variables, ranged over by x, which do not follow

the permutative convention. These will represent unknown meta-level values, which

include unknown object-level terms and bindable names. The syntax of αML is pre-

sented in Figure 1. The grammars of values and expressions correspond to a higher-

order functional programming language extended with additional features for produc-

ing executable prototypes of inductively-defined relations. We only consider expressions

which are in A-normal form [9], which means that evaluation order is specified using
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let bindings. This simplifies the presentation and makes proofs more straightforward,

without reducing the expressiveness of the language (extra let bindings can be added

to translate more general constructs such as <e>e′ into A-normal form). We identify

expressions up to α-conversion of bound variables. The variables in recursive functions,

let bindings and case expressions bind as one would expect—the only unusual binding

form is Ex:E. e, where x is bound within e.

In the interest of brevity we will not discuss the syntactic constructs which are

present in a standard functional programming language. Turning to the novel syntac-

tic constructs, the value T represents successful completion of some CLP-style com-

putation. The abstraction term-former <v>v′ represents an object-level name-binder,

with the single name v bound in its lexical scope v′. The typing relation presented

in Figure 2 will ensure that v is always some variable x of name sort. We stress that

the abstraction term-former is not a binder in the meta-language. This means that we

regard <x>x and <y>y as distinct expressions when x 6= y.

Constraints can either be equality or freshness constraints. Equality constraints

correspond to α-equivalence of ASTs and freshness constraints model the “not free in”

relation between a name and an AST. This is a common side-condition in definitions

which is used to prevent name capture. The type system presented below ensures that

v in the freshness constraint v # v′ is always some variable x of name sort. In the case

where v′ is also some variable x′ of name sort, the constraint x # x′ corresponds to a

name inequality test between x and x′. Practical experience has shown that this is a

concise yet expressive constraint grammar. We write c for a finite conjunction of atomic

constraints c1 & · · · & cn and identify the empty conjunction with the true expression

T. It was noted in [19] that satisfiability of these constraint problems is NP-complete.

The details of constraint solving are not relevant to this paper so we will not discuss

them further.

The expression Ex:E. e uses meta-level α-renaming to generate a new meta-variable

of equality typeE, which is bound in the expression e. In the case when E is a name sort

N , the variable denotes an unknown object-level bindable name. Although the meta-

variables which we generate are always new in the meta-level, they do not necessarily

denote fresh names at the object-level because we have abandoned the permutative

convention. For example, the three possible instantiations of the schematic version

of the K combinator from (1) can all be rendered in αML by the judicious addition

(or omission) of freshness constraints. The language also includes a non-deterministic

branching operator e1 || e2 for modelling proof-search computations.

We use evaluation contexts in the style of Felleisen [8], formalised using frame stacks

F after [24]. These are also defined in Figure 1. A frame stack is the continuation which

corresponds to the remainder of the current computation. The empty stack Id means

that we have nothing else to do with the result from the expression currently being

evaluated, and the non-empty stack F ◦(x. e) binds the result v of the current expression

to x in e and evaluates this in the context F (where x is bound in e and we identify

frame stacks up to α-conversion).

2.3 Type system

We now turn to the αML type system. We distinguish three kinds of type environment:

Γ ranges over finite partial functions from Var to TyΣ , ∆ over finite partial functions

from Var to EtyΣ and η over finite partial functions from Var to NΣ . We write dom(Γ )
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Γ ⊢ T:prop

Γ ⊢ v:N Γ ⊢ v′:E

Γ ⊢ <v>v′:[N]E

Γ ⊢ v:E Γ ⊢ v′:E

Γ ⊢ v = v′:prop

Γ ⊢ v:N Γ ⊢ v′:E

Γ ⊢ v # v′:prop

Γ ⊢ e:T Γ ⊢ e′:T

Γ ⊢ e || e′:T

x /∈ dom(Γ ) α-TreeΣ(E) 6= ∅ Γ, x:E ⊢ e:T

Γ ⊢ Ex:E. e:T Γ ⊢ Id:T → T

Γ ⊢ F:T ′′ → T ′ Γ, x:T ⊢ e:T ′′ x /∈ dom(Γ )

Γ ⊢ F ◦ (x. e):T → T ′

Fig. 2 Selected αML typing rules

for the domain of definition of Γ (similarly for ∆ and η). The typing judgement for

expressions has the form Γ ⊢ e:T , and typing rules for the novel forms of expression are

presented in Figure 2. The rules corresponding to standard features of functional pro-

gramming languages are entirely standard. We force programmers to provide explicit

types for recursive function values and existentially-quantified variables—this reduces

the typeability problem to type checking and forces users to document their code in

the form of type annotations.

The rule for an abstraction <v>v′ requires that the value v in abstraction position

is of some name sort N . By inspection of the rules we see that this only possible if v

is a variable x such that x ∈ dom(Γ ) and Γ (x) = N (because the sets DΣ and NΣ are

disjoint). We have already discussed the requirement that the body of an abstraction

must be assigned an equality type E.

There are three rules for assigning the prop type to an expression, which may be

T or an equality or freshness constraint. The rule for an equality constraint v = v′

requires that v and v′ both have the same equality type E. The freshness constraint

rule is similar to the abstraction rule described above and implies that the value on

the left-hand side of the # must be a variable x of name sort.

In the rule for existentials, the newly-generated variable must be of an equality type

E, so we cannot generate meta-variables to stand for unknown α-trees or unknown

functions, for example. The side-condition x /∈ dom(Γ ) can always be satisfied by α-

renaming the variable at the meta-level. The other side-condition (α-TreeΣ(E) 6= ∅)

ensures that there exists at least one potential instantiation for the meta-variable x—

it would be unsound to create meta-variables ranging over an empty type. Given a

datatype declaration Σ it is decidable whether any given equality type is inhabited.

The family of sets α-TreeΣ(E) is formalised in Definition 6 below.

The typing judgement for frame stacks has the form Γ ⊢ F:T → T ′, which means

that the stack accepts a value of type T and that the overall result of the computation

has type T ′. This judgement is defined by the final two rules from Figure 2.

2.4 Operational semantics

We now present the operational semantics of αML as a non-deterministic, small-step

transition relation between abstract machine configurations. This requires the following
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definition of pure αML expressions and frame stacks, which correspond to traditional

functional programs.

Definition 1 (Pure expressions and frame stacks) An expression or frame stack

is pure if it does not contain any sub-expressions of the form <v>v′, T, v = v′, v # v′,

e || e′ or Ex:E. e.

In order to present the operational semantics cleanly, we will distinguish between

pure and impure configurations:

– Pure configurations have the form 〈F, e〉, where F and e are both pure in the sense

of Definition 1.

– Impure configurations have the form ∃∆(c;F ; e). The additional elements corre-

spond to the side-effecting features of αML: the generation of new meta-variables

(stored in ∆) and the collection of mutually satisfiable constraints (recorded using

CLP techniques).

We define a typing relation Γ ⊢ ∃∆(c;F ; e):T for impure configurations, which

holds if dom(Γ ) ∩ dom(∆) = ∅ (always satisfiable by α-renaming) and, for some type

T ′, we have Γ,∆ ⊢ e:T ′, Γ,∆ ⊢ F:T ′ → T and Γ,∆ ⊢ c:prop (for all c ∈ c).

We now turn to the rules which define the operational semantics of αML. Figure 3

presents small-step rules for two transition relations:

– 〈F, e〉 →P 〈F ′, e′〉 between two pure configurations; and

– ∃∆(c;F ; e) −→ ∃∆′(c′;F ′; e′) between two impure configurations.

The →P relation captures the behaviour of an eager functional programming lan-

guage with case expressions, tupling, projection and recursive functions. The properties

of such languages have been extensively studied so we will not discuss the pure transi-

tion rules in great detail. The impure transition rule (I1) uses the pure transition rules

to incorporate functional programming into αML, which leads to the following result

concerning the evaluation of pure expressions.

Theorem 2 (Embedded functional programming language) Suppose that the

typing judgement ∅ ⊢ ∃∅(T;F ; e):T holds. Then, if F and e are pure then ∃∅(T;F ; e) −→

∃∆(c;F ′; e′) holds iff ∆ = ∅, c = T, F ′ and e′ are pure, and 〈F, e〉 →P 〈F ′, e′〉.

Proof By cases on the impure reduction rules, using the fact that purity is preserved

by the →P rules. ⊓⊔

Rule (I2) tests the new constraint c for satisfiability with the existing constraints

in c, by deciding whether |= ∃∆(c & c). This satisfiability judgement is true if there

exists an instantiation V of the variables in dom(∆) (defined formally in Definition 7

below) which simultaneously satisfies c and all of the constraints in c. We will not

discuss constraint satisfaction here—see [19] for more details. If the constraints are

mutually satisfiable then it is safe to continue—the new constraint is incorporated

into the constraint environment. If ∃∆(c & c) is not satisfiable then this branch of the

computation can proceed no further.

Rule (I3) is responsible for generating new meta-variables to stand for unknown

values of equality type. The side condition x /∈ dom(∆) ensures that x is indeed new,

and is trivially satisfiable by meta-level α-renaming.
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Pure transitions: 〈F, e〉 →P 〈F ′, e′〉

(P1) 〈F ◦ (x. e), v〉 →P 〈F, e[v/x]〉.

(P2) 〈F, (let x = e in e′)〉 →P 〈F ◦ (x. e′), e〉.

(P3) 〈F, v v′〉 →P 〈F, e[v/f, v′/x]〉

if v is fun f(x:T):T ′ = e.

(P4) 〈F, (caseKi v ofK1 x1 -> e1 | · · · | Kn xn -> en)〉 →P 〈F, ei[v/xi]〉

if i ∈ {1, . . . , n}.

(P5) 〈F, (v1, . . . ,vn). i〉 →P 〈F, vi〉

if i ∈ {1, . . . , n}.

Impure transitions: ∃∆(c;F ; e) −→ ∃∆′(c′;F ′; e′)

(I1) ∃∆(c;F ; e) −→ ∃∆(c;F ′; e′)

if 〈F, e〉 →P 〈F ′, e′〉.

(I2) ∃∆(c;F ; c) −→ ∃∆(c & c;F ;T)

if |= ∃∆(c & c).

(I3) ∃∆(c;F ; Ex:E. e) −→ ∃∆, x:E(c;F ; e)

if x /∈ dom(∆).

(I4) ∃∆(c;F ; case x ofK1 x1 -> e1 | · · · | Kn xn -> en) −→ ∃∆, xi:Ei(c & x =Ki xi;F ; ei)

if i ∈ {1, . . . , n} and datatype S =Σ K1 of En | · · · | Kn of En,

where ∆(x) = S and |= ∃∆, xi:Ei(c & x =Ki xi).

(I5) ∃∆(c;F ;x. i) −→ ∃∆,x1:E1, . . . , xn:En(c & x = (x1, . . . ,xn);F ;xi)

if i ∈ {1, . . . , n} and ∆(x) = E1 * · · · * En.

(I6) ∃∆(c;F ; e1 || e2) −→ ∃∆(c;F ; ei)

if i ∈ {1, 2}.

Fig. 3 Small-step operational semantics for αML

Rules (I4) and (I5) are the impure counterparts of rules (P4) and (P5) for decon-

structing tuples and data values respectively. These rules are necessary because the

ability to generate meta-variables means that a well-typed, closed expression could

reduce to an expression like “case x ofK1 x1 -> e1 | · · · | Kn xn -> en”. Similarly, we

may need to project out of an unknown tuple. Rule (I4) causes non-determinism by

narrowing over the unknown value x. Narrowing involves non-deterministically guess-

ing instantiations for unknown arguments to a function or case expression, so that the

expression may be evaluated further. There is a considerable literature on this partic-

ular kind of non-determinism, largely centred round the functional logic programming

language Curry—see [15] for a survey.

Rule (I6) introduces more non-deterministic branching by simply allowing the ex-

pression e1 || e2 to transition either to e1 or to e2. No search strategy is specified,

and no treatment of stuck computation branches is prescribed—such issues are not im-

portant in our theoretical treatment. There is no communication between the various

branches of an αML computation.

Definition 2 We say that an αML program is any closed expression e. The initial

configuration for a program e is ∃∅(T; Id; e).

We now define notions of success and failure for αML programs. Success corre-

sponds to normal termination of a functional program, and failure corresponds to a

logic program reporting that no derivation exists for the user’s query. The predicate for
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successful termination will feature prominently in our definition of operational equiv-

alence in Section 4.

Definition 3 (Success) A configuration has succeeded if it is of the form ∃∆(c; Id; v),

where |= ∃∆(c) holds. A configuration may succeed, written ∃∆(c;F ; e)↓, if there exists

a finite sequence of −→-reductions to a configuration that has succeeded. We write

∃∆(c;F ; c)↓n if there exists such a sequence of length less than or equal to n.

Definition 4 (Failure) A configuration has failed if it takes one of the following

forms:

– ∃∆(c; Id; v) where ∃∆(c) is not satisfiable; or

– ∃∆(c;F ; c′) where ∃∆(c & c′) is not satisfiable.

A configuration must fail, written ∃∆(c;F ; e) fails, if every sequence of impure reduc-

tions is finite and leads to a configuration that has failed. We write ∃∆(c;F ; e) failsn

if all such sequences are of length less than or equal to n.

We can now state the standard safety results which tell us that well-typed αML

programs do not stop making impure transitions unless they have reached a state of

success or failure.

Theorem 3 (Preservation of satisfaction) If ∅ ⊢ ∃∆(c;F ; e):T and ∃∆(c;F ; e) −→
∃∆′(c′;F ′; e′) then |= ∃∆(c) iff |= ∃∆′(c′). ⊓⊔

Theorem 4 (Type preservation) If ∅ ⊢ ∃∆(c;F ; e):T and there exists a configura-

tion ∃∆′(c′;F ′; e′) such that ∃∆(c;F ; e) −→ ∃∆′(c′;F ′; e′), then ∅ ⊢ ∃∆′(c′;F ′; e′):T

holds. ⊓⊔

Theorem 5 (Progress) If ∅ ⊢ ∃∆(c;F ; e):T and ∃∆(c;F ; e) has neither succeeded

nor failed, then ∃∆(c;F ; e) −→ ∃∆′(c′;F ′; e′) holds for some ∃∆′(c′;F ′; e′). ⊓⊔

The proofs of these results are straightforward case analyses over the small-step

transition rules from Definition 3.

3 Encoding abstract syntax trees in αML

In this section we formalise an encoding of ASTs into αML. We begin by recalling

the K combinator as a useful example of a closed λ-term. As mentioned above, this

is typically written as the schematic term λx. λy. x, which is intended to denote the

α-equivalence class [Lam <n>(Lam <n′>(Varn))]α (using the nominal signature for λ-

terms introduced in Section 2.1). Since the names n and n′ are assumed to follow the

permutative convention, our encoding into αML (which uses NPNAS) must have the

following features.

– the generation of new meta-variables to stand for names;

– constraints that these names must be distinct from each other;

– a value which represents the structure of the AST.
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The rest of this section presents such an encoding, and we will recap the K combinator

example at the end of the section.

We specify the valid ASTs of our object-language using a nominal signature Σ as

described above. To model object-level bindable names we will use the permutative

names n ∈ Name introduced in Section 1. We assume the existence of a total function

sort which maps every name n to a name sort N in Σ and is such that there are

infinitely many names assigned to every name sort. We say that n ∈ Name(N) if

sort(n) = N .

Definition 5 (Ground trees) We write TreeΣ for the set of all syntax trees over the

nominal signature Σ. With names (and unit) as our building blocks, we define classes

g ∈ TreeΣ(E) of ground trees of the various equality types by constructor application,

tupling and name abstraction, as follows.

sort(n) = N

n ∈ TreeΣ(N) () ∈ TreeΣ(unit)

g1 ∈ TreeΣ(E1) · · · gn ∈ TreeΣ(En)

(g1, . . . ,gn) ∈ TreeΣ(E1 * · · · * En)

g ∈ TreeΣ(E) (K:E → S) ∈ Σ

K g ∈ TreeΣ(S)

sort(n) = N g ∈ TreeΣ(E)

<n>g ∈ TreeΣ([N]E)

The most interesting case here is for abstractions <n>g, which inhabit the family

of abstraction types [N]E. This enforces syntactically that we can only bind a single

name, which must be of a name sort N . We write FN (g) for the set of free names of

a tree, i.e. those names n which appear without an enclosing <n>− abstraction.

Definition 6 (α-trees) Our ground trees correspond precisely to the ground nominal

terms of [34]—i.e. those which do not contain logic variables. Hence there is a well-

studied notion of α-equivalence between ground trees, and we will write α-TreeΣ(E)

for the set of all α-equivalence classes [g]α of ground trees g ∈ TreeΣ(E), which we call

α-trees.

Definition 7 (α-tree valuations) An α-tree valuation V is a finite partial function

which maps variables to α-trees. We write dom(V ) for the domain of the partial func-

tion. Given a type environment ∆ we write α-TreeΣ(∆) for the set of all α-tree valua-

tions V such that dom(V ) = dom(∆) and V (x) ∈ α-TreeΣ(∆(x)) for all x ∈ dom(V ).

This ensures that the valuation respects types.

We will use α-tree valuations to instantiate αML values of equality types, which

coincide with the schematic patterns of [19]. Given an αML value v such that ∆ ⊢ v:E,

we can show (using the techniques of [26]) that there exists a well-behaved notion of

pattern instantiation JvKV which produces an α-tree [g]α ∈ α-TreeΣ(E).

We now proceed to the technical details of our AST encoding. This translation

must be carefully defined so that our correctness theorem is true. By Definition 5 the

only identifiers which appear in ground trees are names n, which do not appear in

the syntax of αML. We therefore fix a bijection between the countably infinite sets of

names (Name) and variables (Var). We write V(n) for the variable corresponding to

the name n. This will be used to translate the free names of a ground tree. To deal

with the bound names, we introduce the following technical device.

Definition 8 (Name environments) Let ε range over name environments, which

are finite partial functions from the set of names (Name) to the set of variables (Var).
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We write ε[n 7→ x] for the environment which maps n to x but otherwise behaves like

ε. In particular, we will write εg for the environment {n 7→ V(n) | n ∈ FN (g)} which

maps the free names of g to variables according to the fixed bijection. We write dom(ε)

and cod(ε) for the domain and codomain of ε, respectively.

The names in a ground tree are always of a name sort—hence the variables occurring

in translated trees should also all be of name sort. We now pick out some important

relationships between name environments and type environments η. Throughout, we

write n for a finite set of distinct names. For any name environment ε we write ηε
for the corresponding typing environment {ε(n):sort(n) | n ∈ dom(ε)}. Furthermore,

we will write Γ ⊢ε n to mean that Γ (ε(n)) = sort(n) for all n ∈ n, i.e. the type

environment Γ respects the name-sorting function on the image of n under ε. For the

special case where ε is the (appropriate subset of the) fixed bijection V(n) between

names and variables, we will elide the environment and just write Γ ⊢ n.

Our translation of ground trees follows the intuition that “what matters about

names when they are used to describe binding structure is not their particular iden-

tity, but rather the distinctions between them” [19]. Hence we must express pairwise

distinctions between meta-variables (of name sort) drawn from a finite set.

Definition 9 (Name distinction constraints) Fix a set x of (distinct) variables

x1, . . . , xn. Then, define #x to be the set of atomic constraints

#x , {xi # xj | 1 ≤ i < j ≤ n}. (2)

We now use this syntactic sugar to define the translation of ground trees into αML.

Definition 10 (Tree translation) For a ground tree g, suppose that εg ⊢ 〈ηεg , g〉 ⊲

〈η′, vg〉 holds (this auxiliary relation is described below). Then, the αML translation

JgK of g is given by

JgK , E(η′ − ηεg ).#dom(η′) & vg .

The variables in dom(η′) are all of those used in the encoding of the ground tree

g (this is a property of the ⊲ relation). The variables in dom(ηεg ) are those which

correspond to the free names of g. Hence, the variables in dom(η′ − ηεg ) represent the

bound names of g. This is meaningful because the abstracted names within a particular

ground tree are treated concretely.

The αML representation JgK of a ground tree g is not a value but rather an expres-

sion which, when evaluated, creates a pattern vg that reflects the syntactic structure of

g and generates constraints which represent the binding structure of g. The variables

corresponding to free names of g are free variables of its encoding JgK, and the variables

corresponding to bound names of g are bound at the meta-level in the expression JgK.

The freshness constraints require that all of the names be mutually distinct, thereby

modelling the permutative behaviour of the underlying set Name. The main theorem of

Section 5 will demonstrate that, taken together, the value and the constraints faithfully

represent the α-tree [g]α.

The auxiliary relation ε ⊢ 〈η, g〉 ⊲ 〈η′, v〉 transforms a type environment η and a

ground tree g into another type environment η′ and an αML value v, all in the presence

of a name environment ε. The type environments record the αML variables that occur

in the translation of the tree, so that new variables can be generated, and the name

environment ensures that the binding scope of the names from the tree is respected.
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ε(n) = x

ε ⊢ 〈η, n〉 ⊲ 〈η, x〉 ε ⊢ 〈η, ()〉 ⊲ 〈η, ()〉

ε ⊢ 〈η, g〉 ⊲ 〈η′, v〉

ε ⊢ 〈η,K g〉 ⊲ 〈η′,K v〉

ε ⊢ 〈η, g1〉 ⊲ 〈η1, v1〉 · · · ε ⊢ 〈ηk−1, gk〉 ⊲ 〈η′, vk〉

ε ⊢ 〈η, (g1, . . . ,gk)〉 ⊲ 〈η′, (v1, . . . ,vk)〉

x /∈ dom(η) ε[n 7→ x] ⊢ 〈η, x:sort(n), g〉 ⊲ 〈η′, v〉

ε ⊢ 〈η, <n>g〉 ⊲ 〈η′, <x>v〉

Fig. 4 Tree translation rules

The ⊲ relation is defined by the rules in Figure 4. The type environment is threaded

through the definition as state, whereas the name environment follows the binding

structure of the AST. The name environment is only used by the rule for names, which

looks up a name in the environment and translates it to the appropriate variable.

The abstraction rule modifies both the type and name environments. For an ab-

straction <n>g, the type environment is enlarged by choosing a fresh variable which

does not already occur in η and adding it, with the same type sort(n). The name envi-

ronment is then modified by overriding any existing mapping for n so that it is mapped

to the freshly-generated variable x. This corresponds to the lexical scope of that bound

occurrence of n in the original tree. There may well be multiple occurrences of n, even

multiple bound occurrences: this is not problematic because each binding occurrence

gets implemented by a distinct variable in αML and the environment ensures that the

binding structure of the tree is faithfully represented.

Remark 2 The encoding [g]F of λ-terms into FreshML [30, Definition 3.7.2] is as fol-

lows.

[x]F , Varx (3)

[λx. t]F , letx = fresh in Lam <x>[t]F (4)

[t t′]F , App ([t]F , [t
′]F ) (5)

Here we re-use the nominal signature from Section 2.1 to represent λ-terms in the meta-

language. The key feature to note is that λ-bound variables are represented using meta-

level bound variables which are instantiated with a fresh name by the fresh operator.

Thus the FreshML encoding of λ-terms enforces the permutative convention implicitly

by its use of globally fresh names to stand for bound variables.

Our encoding of ground trees into αML defined in Definition 10 is interesting be-

cause it does not rely on the fresh generation operation which is used in the FreshML

translation. The αML encoding is certainly more involved than the FreshML one be-

cause information on name distinctness must be made explicit and passed around the

program. Returning to our running example of the K combinator, the encoding of the

α-equivalence class representative Lam <n>(Lam <n′>(Varn)) in αML is

Ex:var. Ey:var. (x # y & Lam <x>(Lam <y>(Var x))) (6)

where we assume that sort(n) = sort(n′) = var. This translation satisfies the three

criteria which we mentioned at the start of the section. Two new meta-variables, x
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and y, are generated to stand for the object-level names. To model permutative be-

haviour we require that these two names be distinct from each other. Finally, the value

Lam <x>(Lam <y>(Var x)) models the actual syntactic structure of the term.

As a further example, the αML encoding of the ground tree (<n><n>n, (n,n′)) is

Ex1:N. Ex2:N.#{x1,x2,V(n),V(n′)} & (<x1><x2>x2, (V(n),V(n
′))) (7)

where we assume that sort(n) = sort(n′) = N . This example illustrates the handling of

multiple, nested occurrences of the same name in abstraction position and furthermore

a clash between a bound and a free name. Repeated occurrences in binding position

are handled correctly because every single binder is modelled by a newly-generated

meta-variable, and free occurrences are translated using the fixed bijection V(n).

4 Contextual equivalence for αML

In this section we develop a theory of contextual equivalence for αML. We begin by

defining a notion of operational equivalence between well-typed αML expressions, which

is based on observing the results of successful computations of the αML abstract ma-

chine. We then show that this equivalence relation corresponds to contextual equiva-

lence in the broader sense.

Definition 11 (Operational equivalence) Recalling the definition of success from

Definition 3, we define the operational equivalence relation ∆ ⊢ e∼= e′:T which holds

iff ∆ ⊢ e:T and ∆ ⊢ e′:T both hold and

∃∆′(c;F ; e)↓ ⇐⇒ ∃∆′(c;F ; e′)↓

holds for all ∆′, c, F and T ′ such that ∆′ ⊇ ∆ and ∆′ ⊢ c:prop and ∆′ ⊢ F:T → T ′.

We extend this definition to a relation ∼=◦ between arbitrary αML expressions,

including those which contain free variables that are not of equality types. We will

refer to ∼=◦ as the open extension of ∼=, even though both relations contain expressions

with free variables. The open extension is defined in terms of ∼= by substituting values

(which only contain free variables of equality types) for the free variables which are

not of an equality type. We write e[σ] for the capture-avoiding application of the

substitution σ to e.

Definition 12 (Open extension of ∼=) Let the typing environment Γ be decom-

posed into disjoint typing environments ∆ and Γ ′, where Γ ′(x) is not an equal-

ity type for any x ∈ dom(Γ ′). Then, the open extension of operational equivalence

Γ ⊢ e ∼=◦ e′:T holds iff ∆′ ⊢ e[σ] ∼= e′[σ]:T holds for all ∆′ ⊇ ∆ and all capture-

avoiding substitutions σ ∈ SubΣ(Γ ′,∆′), which is the set of all substitutions which

map variables x ∈ dom(Γ ′) to values σ(x) such that ∆′ ⊢ σ(x):Γ ′(x).

Before we consider the properties of the operational equivalence relation defined

above, we first present a general notion of type-respecting relations between αML

expressions, after [25] and [27].

Definition 13 (Expression relations) An expression relation E is a set of tuples

(Γ, e, e′, T ), made up of a typing environment, two expressions and a type, such that

Γ ⊢ e:T and Γ ⊢ e′:T . We write Γ ⊢ e E e′:T to mean that (Γ, e, e′, T ) ∈ E . We now

enumerate some standard properties of expression relations. We say that
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x ∈ dom(Γ ) Γ (x) = T

Γ ⊢ x Ê x:T

(K:T → D) ∈ Σ Γ ⊢ v E v′:T

Γ ⊢ K v Ê K v′:D

Γ ⊢ v1 E v′1:T1 · · · Γ ⊢ vn E v′n:Tn

Γ ⊢ (v1, . . . ,vn) Ê (v′1, . . . ,v
′

n):T1 * · · · * Tn Γ ⊢ () E ():unit

Γ, f:T → T ′, x:T ⊢ e E e′:T ′ f, x /∈ dom(Γ )

Γ ⊢ (fun f(x:T):T ′ = e) Ê (fun f(x:T):T ′ = e′):T → T ′ Γ ⊢ T Ê T:prop

Γ ⊢ v1 E v′1:N Γ ⊢ v2 E v′2:E

Γ ⊢ <v1>v2 Ê <v′1>v
′

2:[N]E

Γ ⊢ v1 E v′1:E Γ ⊢ v2 E v′2:E

Γ ⊢ (v1 = v2) Ê (v′1 = v′2):prop

Γ ⊢ v1 E v′1:N Γ ⊢ v2 E v′2:E

Γ ⊢ (v1 # v2) Ê (v′1 # v′2):prop

Γ ⊢ e1 E e′1:T Γ, x:T ⊢ e2 E e′2:T
′ x /∈ dom(Γ )

Γ ⊢ (let x = e1 in e2) Ê (let x = e′1 in e′2):T
′

Γ ⊢ v1 E v′1:T → T ′ Γ ⊢ v2 E v′2:T

Γ ⊢ (v1 v2) Ê (v′1 v
′

2):T
′

x1 6= . . . 6= xn /∈ dom(Γ ) D = K1 of T1 | · · · | Kn of Tn

Γ ⊢ v E v′:D Γ, x1:T1 ⊢ e1 E e′1:T · · · Γ, xn:Tn ⊢ en E e′n:T

Γ ⊢ (case v ofK1 x1 -> e1 | · · · | Kn xn -> en) Ê
(case v′ ofK1 x1 -> e′1 | · · · | Kn xn -> e′n):T

Γ ⊢ v E v′:T1 * · · · * Tn i ∈ {1, . . . , n}

Γ ⊢ (v. i) Ê (v′. i):Ti

Γ ⊢ e1 E e′1:T Γ ⊢ e2 E e′2:T

Γ ⊢ (e1 || e2) Ê (e′1 || e′2):T

x /∈ dom(Γ ) α-TreeΣ(E) 6= ∅ Γ, x:E ⊢ e E e′:T

Γ ⊢ ( Ex:E. e) Ê ( Ex:E. e′):T

Fig. 5 Compatible refinement Ê of an expression relation E.

– E is an equivalence relation if it is reflexive (Γ ⊢ e:T =⇒ Γ ⊢ e E e:T ),

symmetric (Γ ⊢ e E e′:T =⇒ Γ ⊢ e′ E e:T ) and transitive (Γ ⊢ e E e′:T ∧ Γ ⊢

e′ E e′′:T =⇒ Γ ⊢ e E e′′:T ).

– E has the weakening property if Γ ⊢ e E e′:T and Γ ′ ⊇ Γ imply Γ ′ ⊢ e E e′:T .

– E is substitutive if Γ, Γ ′ ⊢ e E e′:T and Γ ⊢ σ E σ′:Γ ′ imply Γ ⊢ e[σ] E e′[σ]:T ,

where Γ ⊢ σEσ′:Γ ′ means that σ, σ′ ∈ SubΣ(Γ, Γ ′) and that Γ ′ ⊢ σ(x)Eσ′(x):Γ (x)

holds for all x ∈ dom(Γ ).

– E is compatible if Ê ⊆ E , where Ê is the compatible refinement of E (defined in

Figure 5).

– E is adequate if ∆ ⊢ e E e′:T implies ∆ ⊢ e∼= e′:T .

Most of these definitions are fairly standard. The most interesting is compatibility,

which states that membership of the expression relation is preserved by the term-

formers of the αML language. A property of expression relations that is stated explicitly

in [27] but omitted from Definition 13 is equivariance—it is trivial to show that all αML

expression relations are equivariant because names do not appear in the syntax of αML.

We note that operational equivalence (∼=◦) is an expression relation because it

requires that the two expressions both have the same type. The following theorem enu-
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merates some desirable properties of ∼=◦. We call it CIU after [21], because in Defini-

tion 12 we quantify over all possible closing substitutions before testing the termination

behaviour of expressions.

Theorem 6 (CIU) Operational equivalence, ∼=◦, is an equivalence relation and has

the weakening property. Furthermore, it is adequate, substitutive and compatible. It is

also the largest such expression relation.

Proof It is easy to show that ∼=◦ is an equivalence relation and has the weakening and

adequacy properties. We now give brief outlines of the proofs of the other properties.

– ∼=◦ is substitutive

It suffices to prove the case where the typing environment Γ maps all variables in

dom(Γ ) to equality types, and where the substitutions are both singletons, i.e. we

aim to show that

∆,x:T ⊢ e∼=
◦ e′:T ′ ∧ ∆ ⊢ v ∼= v′:T =⇒ ∆ ⊢ e[v/x]∼= e′[v′/x]:T ′.

This is sufficient because we can repeatedly apply this result to simulate any closing

substitution, including those used to define ∼=◦ in terms of ∼=. We therefore assume

that ∆, x:T ⊢ e ∼=◦ e′:T ′ and ∆ ⊢ v ∼= v′:T both hold. By choosing appropriate

configurations we may infer that

∃∆′(c;F ; e[v′/x])↓ ⇐⇒ ∃∆′(c;F ; e′[v′/x])↓ (8)

∃∆′(c;F ◦ (x. e); v)↓ ⇐⇒ ∃∆′(c;F ◦ (x. e); v′)↓ (9)

both hold, where ∆′ ⊇ ∆, ∆′ ⊢ c:prop and ∆′ ⊢ F:T ′ → T ′′ all hold, for some ∆′,

c, F and T ′′. Then, using rules (I1) and (P1) we can make a −→ transition on both

sides of (9) to get that ∃∆′(c;F ; e[v/x])↓ ⇐⇒ ∃∆′(c;F ; e[v′/x])↓ holds. Then, we

can combine this with (8) to get ∃∆′(c;F ; e[v/x])↓ ⇐⇒ ∃∆′(c;F ; e′[v′/x])↓, and
finally by Definition 12 we get that ∆ ⊢ e[v/x]∼= e′[v′/x]:T ′ holds, as required.

– ∼=◦ is compatible

Since ∼=◦ is known to be reflexive and substitutive, it suffices to prove this result for

the special case where the expressions e and e′ only contain variables of equality

types. Therefore we must show that ∆ ⊢ e ∼̂=◦ e′:T implies ∆ ⊢ e∼=◦ e′:T .

We use an operational proof technique similar to that of [27], involving a variant

of Howe’s method [16]. Although this technique is powerful, the reasons why it

works are somewhat mysterious. For this reason, we proved our compatibility result

by case analysis on the compatible extension ∼̂=◦ of the operational equivalence

relation, rather than by a single large termination induction as in [27, Appendix A].

Although more long-winded, this approach to proving compatibility draws attention

to the particular case where we require the full power of Howe’s method—the case

for recursive function values. The other cases are dealt with by choosing appropriate

αML evaluation contexts, as in the substitutivity proof. The reader is referred to

[18, Appendix A] for the details of the compatibility proof.

– ∼=◦ is the largest expression relation with the above properties

We fix an expression relation E , and assume that E is reflexive, symmetric and

transitive, adequate, substitutive and compatible, and that E has the weakening

property. Now, we must show that E ⊆ ∼=◦. Suppose that Γ ⊢ e E e′:T holds, and

that Γ = ∆,Γ ′, where Γ ′(x) is not an equality type for all x ∈ dom(Γ ′). Now,

we pick an arbitrary substitution σ ∈ SubΣ(Γ ′,∆′), for some ∆′ ⊇ ∆. Since E is
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reflexive we know that Γ ′ ⊢ σE σ:∆′ holds. Then, by the fact that E is substitutive

and has the weakening property, we get that ∆′ ⊢ e[σ] E e′[σ]:T holds, and since E
is adequate we know that ∆′ ⊢ e[σ]∼= e′[σ]:T . Finally, by definition of ∼=◦, this is

equivalent to Γ ⊢ e∼=◦ e′:T , as required.

This completes the proof of Theorem 6. ⊓⊔

Following the approach of [14] and [20], we have therefore shown that the ∼=◦

relation coincides with the standard notion of contextual equivalence, Γ ⊢ e∼=ctx e′:T

which holds iff Γ ⊢ e:T and Γ ⊢ e′:T both hold and

∀C ∈ CtxΣ(T ). C[e]↓ ⇐⇒ C[e′]↓.

Here, CtxΣ(T ) is the set of all αML program contexts C which accept values of type T

(the definition is straightforward given the language syntax defined in Figure 1). The

CIU theorem shows that ∼=◦ possesses the key properties of contextual equivalence,

being the largest congruence relation which is adequate. Henceforth we will refer to ∼=◦

as contextual equivalence.

5 Correctness of the encoding

We now show that two ground trees g and g′ are α-equivalent precisely when their

encodings JgK and Jg′K are contextually equivalent in αML.

Theorem 7 (Correctness of representation for αML) If η ⊢ FN (g, g′) then

g =α g′:E holds if and only if η ⊢ JgK ∼= Jg′K:E.

This is a fundamental correctness result if we claim to support meta-programming

with binders handled correctly modulo α-equivalence. A similar result was proved for

FreshML [30,27] but the proof presented here is substantially different because the

language constructs of αML are different to those of FreshML. We will prove the two

directions separately in the remainder of this section. Given the definition of JgK in

Definition 10, we can immediately dispense with the forward direction.

Lemma 1 (=α implies ∼=) If g =α g′:E and η ⊢ FN (g, g′) then η ⊢ JgK ∼= Jg′K:E.

Proof If g =α g′:E then g and g′ differ only by an α-renaming of their abstracted

variables. However, in the translations JgK and Jg′K these variables are bound by ∃-

quantifiers. Since we identify αML expressions up to α-conversion, it follows that JgK

and Jg′K are in fact the same expression. Then, since the tree translation preserves

types we have η ⊢ JgK:E, and since ∼= is reflexive it follows that η ⊢ JgK ∼= Jg′K:E, as

required. ⊓⊔

The other direction is less straightforward, for two reasons: because names do

not appear in the syntax of αML and because the representation of a ground tree

in αML is an expression, not a value. However, the proof is not as complicated as that

for FreshML, since the αML language contains built-in constructs for the solving of

equality constraints, which actually involves checking whether values are α-equivalent.

Therefore, if we know that two translated trees are contextually equivalent, we know

something about their operational behaviour when placed in contexts that are capa-

ble of testing α-equivalence. The following proof exploits this capability of the αML

meta-language.
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Definition 14 Given a set of names n, a name environment ε with dom(ε) ⊇ n and

a valuation V ∈ α-TreeΣ(ηε) such that V |= #ε(n), we write πV,ε,n to stand for some

(equivalently, any) permutation such that V (ε(n)) = {πV,ε,n(n)} for all n ∈ n.

Since names are not present in the syntax of αML, we will relate an αML expression

JgK with the original ground tree g up to a permutation. This is related to the idea of

unifying up to a permutation from equivariant unification [5]. Using Definition 14,

we will prove intermediate results about the relationship between a tree g and the

constraints cg and value vg produced by evaluating its αML representation JgK, leading

up to the key lemma that contextual equivalence implies α-equivalence for ground trees.

Lemma 2 If g ∈ JvKV and η ⊢ v:E and V (x) = {n} then <n>g ∈ J<x>vKV .

Proof This follows from a general result about the existence of a pattern instantiation

operation JvKV which respects α-equivalence, using techniques developed in [26]. ⊓⊔

We now use Lemma 2 to prove that the result of evaluating a tree expression is

equivalent (up to a permutation) to the tree itself. This is a central lemma in relating the

operational behaviour of translated trees to their α-equivalence. We observe that the

explicit freshness information is required so that the permutation πV,ε,n is guaranteed

to exist (see Definition 14).

Lemma 3 If dom(ε) = n, n ⊇ FN (g), η ⊢ε n and ε ⊢ 〈η, g〉 ⊲ 〈η′, v〉 then, for all

V ∈ α-TreeΣ(η′), if V |= #dom(η′) then for some (or any) permutation πV,ε,n it is the

case that (πV,ε,n · g) ∈ (JvgKV ).

Proof The proof is by induction on the structure of g. The cases which do not involve

names are straightforward: the tuple case merely relies on the fact that the ⊲ relation

never discards any information from the type environment. The case when g is a name

n follows from the definition of ε(n) and from that of the permutation πV,ε,n. The

case for an abstraction <n>g′ proceeds by induction using the abstraction rule from

Figure 4. This case relies on Lemma 2 and other standard facts about permutations

and freshness from nominal logic, such as [34, Lemma 2.8]. We omit the detail of the

calculations in the interest of brevity. ⊓⊔

We now relate the operational behaviour of a translated ground tree JgK back

to the ground tree g itself. The following lemma shows that evaluating JgK produces

constraints cg and a value vg which faithfully represent the structure of g, in the sense

that any valuation which satisfies cg can be applied to vg to produce an α-equivalence

class which can be obtained from g by the application of a permutation (as mentioned

above).

Lemma 4 If ∅ ⊢ ∃∆(c;F ; JgK):T and |= ∃∆(c & #dom(ηεg
)) both hold then

∃∆(c;F ; JgK) −→ · · · −→ ∃∆, ηg(c & cg;F ; vg)

and, for all V ∈ α-TreeΣ(∆, ηg), if V |= (c & cg) then for some (or any) permutation

πV,εg ,(FN (g)) it is the case that (πV,εg ,(FN(g)) · g) ∈ JvgKV .

Proof This follows from Lemma 3 and the transition rules of αML. ⊓⊔

We can now use Lemma 4 to prove the main result of this section, where we write

#ε as a shorthand for the mutual freshness constraints #cod(ε).
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Lemma 5 (∼= implies =α) If η ⊢ JgK ∼= Jg′K:E and η ⊢ FN (g, g′) then g =α g′:E.

Proof We assume that η ⊢ JgK ∼= Jg′K:E holds. This means that JgK and Jg′K have

identical termination behaviour in any given (well-typed) context. Writing ε∗ for the

result of merging the environments εg and εg′ , we observe that cod(ε∗) ⊆ dom(η). We

now focus on the behaviour of the following two configurations.

1. ∃η(#ε∗ ; Id ◦ (z. let y = Jg′K in z = y); Jg′K)

2. ∃η(#ε∗ ; Id ◦ (z. let y = Jg′K in z = y); JgK)

From contextual equivalence we know that the termination behaviour of configurations

1 and 2 are identical. Thus it suffices to show firstly that configuration 1 terminates,

and secondly that if configuration 2 terminates then g =α g′:E holds. The proofs of

these follow.

– Configuration 1 terminates.

Since η ⊢ FN (g, g′) we know that |= ∃η(#ε∗) holds. Using Lemma 4 we can show

that

∃η(#ε∗ ; Id ◦ (z.let y = Jg′K in z = y); Jg′K)

−→ · · · −→ ∃η, η1, η2(#ε∗ & c1 & c2; Id; v1 = v2)

holds (after some constraint simplification). We can also show that there exists a

valuation V ∈ α-TreeΣ(η, η1, η2) such that

(πV,ε∗,(FN (g′)) · g
′) ∈ Jv1KV (10)

(πV,ε∗,(FN (g′)) · g
′) ∈ Jv2KV (11)

both hold. Now, in order to show that configuration 1 terminates, it suffices to

show that |= ∃η, η1, η2(#ε∗ & c1 & c2 & v1 = v2). We have already shown that V |=

#ε∗ & c1 & c2, so it remains only to see that V |= v1 = v2. This follows from (10)

and (11).

– If configuration 2 terminates then g =α g′:E.

We assume that configuration 2 terminates. Thus we know that

∃η(#ε∗ ; Id ◦ (z. let y = Jg′K in z = y); JgK)

−→ · · · −→ ∃η, ηg , ηg′(#ε∗ & cg & cg′ & vg = vg′ ; Id;T)

holds (also after some constraint simplification) where ηg , cg and vg are the results

of evaluating JgK and similarly ηg′ , cg′ and vg′ were produced by evaluation of Jg′K.

Furthermore, we know that the final constraint is satisfiable, i.e. that

|= ∃η, ηg, ηg′(#ε∗ & cg & cg′ & vg = vg′).

From this we get that there exists V ∈ α-TreeΣ(η, ηg , ηg′ ) such that V |= #ε∗ and

JvgKV = Jvg′KV both hold (as well as V |= cg and V |= cg′). Using Lemma 3 we

can show that (πV,ε∗,n∗ · g) =α (πV,ε∗,n∗ · g′):E. Finally, by [34, equation 9] we

can eliminate the permutations from both sides to leave g =α g′:E, as required.

This completes the proof of Lemma 5. ⊓⊔
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The correctness theorem for αML (Theorem 7) follows from Lemma 1 and Lemma 5.

This result is novel because our representation of ground trees is correct up to α-

equivalence but does not rely on the existence of globally-fresh names and a mechanism

to dynamically generate these. Such features are central to existing encodings, such

as the FreshML example presented in Remark 2 above. The αML encoding scheme

revolves around explicit, local freshness of names (because names are not assumed to

be distinct unless stated otherwise) whereas the FreshML scheme exploits implicit,

global freshness (because names are always assumed to be distinct). It is of theoretical

interest that both approaches allow encodings encoding of ASTs involving binding

which are provably correct in the sense of Theorem 1 (for FreshML) and Theorem 7

(for αML).

Remark 3 (Contextual equivalence and finite failure) We can define a finer notion of

operational equivalence for αML where the terms must have identical success behaviour

and identical failure behaviour (call this ∼=◦
F ). This relation is of interest because it

is clearly possible to observe the difference between divergence and finite failure in

practice. Furthermore, ∼=◦
F has many of the same good properties as ∼=◦. In particular,

a version of the correctness result (Theorem 7) also holds when ∼=◦
F is used as the

notion of program equivalence. This is true essentially because the evaluation of an en-

coded ground tree JgK never diverges, so observing successful termination is equivalent

to observing both succesful termination and finite failure. There are situations when

evaluation of JgK could fail finitely, for example we have

∃{V(n1):var,V(n2):var}(V(n1) = V(n2); Id; App (Varn1, Varn2)) fails

because the implicit constraint V(n1) # V(n2) is unsatisfiable in conjunction with the

explicit constraint that V(n1) = V(n2). However, Theorem 7 still holds because if

∃∆(c;F ; JgK) fails and g =α g′:E then ∃∆(c;F ; Jg′K) fails also, since g and g′ have

the same sets of free names.

6 Related and future work

6.1 Nominal meta-programming

We have already discussed FreshML [30] at length, and αProlog [4] in passing, as ex-

amples of closely related nominal meta-programming systems. The work on the theory

of contextual equivalence for FreshML [31,27] is the most closely related work to that

described in this paper. In particular, the operationally-based proof strategy of [27]

greatly influenced our work.

That paper also investigated the effect of adding operations on bindable names,

such as a linear order, on the behavioural properties of contextual equivalence. Similar

extensions to αML would most likely take the form of an extended grammar of con-

straints. For example, we might add a constraint x < x′ between variables x and x′ of

name sort. This would be satisfied by any valuation V such that V (x) < V (x′) holds,

for some linear order < on Name. We cite this specific example because a linear order

on bindable names has practical applications, such as the efficient implementation of

type environments as balanced binary trees.

Thanks to the modular design of αML, adding new flavours of constraint is fairly

straightforward. However, the main correctness results proved in this paper (Theo-

rem 6 and Theorem 7) are sensitive to such details and would need to be re-checked.
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In particular, the proof that operational equivalence is compatible depends on the se-

mantics of constraints. Ideally, the proof would be independent of such details. We

could achieve this by characterising those properties of the constraint language which

are required in order for the various correctness results to be true. This would yield a

version of αML parameterised by a constraint domain, along much the same lines as

existing CLP languages [17].

The proofs described in this paper are promising candidates for mechanisation,

perhaps using the Nominal Isabelle [32] theorem proving system. In particular, the

proofs of the CIU result (Theorem 6) are long and tedious, making them ideal for

machine-assisted verification.

6.2 Fresh name generation

In [19, Remark 4.3] we noted that it is possible to extend the core αML language with

a fresh name generation primitive similar to that from FreshML, without moving away

from the “names as meta-variables” design philosophy. The syntax is extended with

an operation fresh N of type N , which has the following impure reduction rule.

(I7) ∃∆(c;F ; fresh N) −→ ∃∆,x:N(c & x #∆;F ;x) where x /∈ dom(∆).

In the definition of rule (I7) we write x # ∆ for the constraint x # x1 & · · · & x # xn,

where dom(∆) = {x1, . . . , xn}. The fresh name is returned as a newly-generated meta-

variable, together with a set of new freshness constraints which require that it be fresh

for every other meta-variable generated so far. These constraints make explicit the

implicit convention of FreshML that distinct names are fresh for each other and that

the newly-generated name may not be free in any unknown object-level data terms.

This is sufficient to define a generative unbinding operator [27] which mimics that of

FreshML.

It is straightforward to rework the theory of contextual equivalence for αML de-

veloped in Section 4 for the extended language with fresh name generation. This gives

us the mathematical tools necessary to study whether fresh is definable up to con-

textual equivalence in the core language, as discussed in [19, Remark 4.3]. We believe

that fresh cannot be defined compositionally in terms of core αML, because rule (I7)

requires run-time introspection of ∆. However, we have been unable to find a proof

either way. Hence the relative expressiveness of the language with and without fresh

remains an open question.

It may be possible to translate programs which use fresh into core αML via a

whole-program transformation. Such a translation could use a monadic programming

style to pass the list of generated variables around the program as explicit state so

that the fresh name generation operation can be implemented using the operations

available in αML. An expression e of type T involving fresh would be translated to

a core αML expression peq of type env → (env,T), where env is some type which

records the names generated so far (e.g. a list of names). The translation would thread

the current environment of generated names through the execution so that translated

occurrences of fresh in the program can access it explicitly.

We do not have a proof that a correct transformation exists: this is left for future

work. Ideally we would relate the result of evaluating a program involving fresh to the

result of evaluating its core αML translation and show that the translation preserves

contextual equivalence.
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6.3 Complex binding structures

Our presentation has only dealt with the binding of a single name using the <v>v′

term-former. We chose to focus on this because of its simplicity and expressiveness.

Other languages offer more flexible primitives for expressing binding structures, such

as Cαml [28] and ott [29]. We believe that it may be possible to model more complex

binding structure in αML using the combination of single name binding and explicit

freshness constraints. For example, consider a mutually-recursive letrec construct in

the object-language.

letrec f1 x1 = e1 and f2 x2 = e2 in e

For simplicity we will assume that there are just two mutually recursive functions. If

we extended our nominal signature with a LetRec constructor with the appropriate

types, this could be encoded as an αML expression something like

let z1 = Je1K in let z2 = Je2K in #{f1,f2,x1,x2} &

x1 # z2 & x2 # z1 & LetRec (<f1><f2>(JeK, <x1><x2>(z1, z2)))

where we write Je∗K for the encoding of e∗, where f1, x1, f2 and x2 are pairwise

distinct and where z1 and z2 are distinct, suitably fresh variables. The structure of the

expession ensures that f1 and f2 are both bound in e and in the bodies of the two

functions. To express that x1 is only bound in e1 and that x2 is only bound in e2, we

bind both x1 and x2 in e1 and e2 then add freshness constraints so that x1 cannot

appear free in e2 and x2 cannot appear free in e1. This is similar to the use of the

inner and outer keywords for specifying binding scope in Cαml [28].

To our knowledge there are no concrete mathematical results concerning the rela-

tive expressiveness of different methods for representing binding structure in a meta-

language. We believe that the approach outlined above could allow Cαml-style binding

structures to be encoded into αML, but we do not have a proof. This is certainly worthy

of further investigation.

6.4 Adequacy theorems in logical frameworks

Outside the world of nominal methods, the most closely related results are the ade-

quacy theorems for logical frameworks. These are succinctly explained by the following

quotation from [23].

Adequeacy theorems play a critical role in logical frameworks They guarantee

that we can translate expressions from the object-language in the meta-language,

compute with them, and then interpret the results back in the object-language.

. . . They ensure that formal reasoning in the logical framework is correct with

respect to the object logic under construction.

Logical frameworks tend to use higher-order abstract syntax (HOAS) techniques to rep-

resent object-level binding. The meta-language is then a simply-typed λ-calculus and

binding in the object-language is encoded using meta-level λ-abstraction. A standard

notion of single capture-avoiding substitution then comes for free using meta-level β-

reduction. This is an elegant solution from the user’s perspective because the problem

of dealing with binders is left as a problem to be solved at the meta-level.
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As mentioned above, adequacy results for logical frameworks are geared towards

ensuring that reasoning at the meta-level is sound with respect to the object-level. Con-

cerns with object-language α-equivalence are dismissed by appealing to α-conversion

in the meta-level, which is a significant departure from our approach. Also, since the

notion of equivalence at the meta-level is usually αβη-equivalence, the issues with con-

textual equivalence that we confronted in this paper do not arise either. It makes more

sense to talk about contextual equivalence in the setting of a programming language

than a logical framework.

7 Conclusion

We have developed a theory of contextual equivalence for the αML meta-language

which was introduced in [19]. We have used our notion of contextual equivalence to

prove the key correctness result that ASTs with binding structure can be faithfully en-

coded in the meta-language so that contextual equivalence and α-equivalence coincide.

This result is not obvious because αML omits certain features such as fresh name gen-

eration which were central to the corresponding proofs for FreshML [31,27]. Therefore

we have shown that using non-permutative meta-variables to represent binders, along

with local constraints expressed distinctness between names, suffices to encode terms

with binding correctly.
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