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ABSTRACT
We collected usage information from 12,500 Android devicesin
the wild over the course of nearly 2 years. Our dataset contains
53 billion data points from 894 models of devices running 687ver-
sions of Android. Processing the collected data presents a number
of challenges ranging from scalability to consistency and privacy
considerations. We present our system architecture for collection
and analysis of this highly-distributed dataset, discuss how our sys-
tem can reliably collect time-series data in the presence ofunreli-
able timing information, and discuss issues and lessons learned that
we believe apply to many other big data collection projects.

1. INTRODUCTION
In the Device Analyzer project we are building a dataset that

captures real-world usage of Android smartphones. We have been
collecting detailed usage information in the wild for nearly 2 years
from 894 models of devices running 687 versions of Android. Over
12,500 users from 167 countries have installed a copy of the soft-
ware from the Android market and consented to their data being
collected. In total, our dataset covers over 1,450 phone-years of
usage, with days of inactivity removed. 10,320 participants con-
tributed for at least one day, 3,680 users contributed more than one
month of usage information and over and 820 participated forat
least six months. The dataset contains 53 billion data points.

We want to share this dataset with industry and other researchers.
Please contact us about accessing the dataset or potential collabo-
rations that align with your area of research.

Device Analyzer captures a time-series log of more than 200 dif-
ferent events in as much detail as is possible on Android. Forex-
ample, Device Analyzer not only records when a device connects
to a WiFi access point; it records all the details captured when-
ever a WiFi scan occurs, including AP MAC address, SSID, sig-
nal strength, frequency, and capabilities. Events recorded include
changes to device settings (33 event types), installed applications
(17), system characteristics (29), bluetooth devices (21), WiFi net-
works (11), disk storage (6), charging characteristics (5), telephony
(20), data usage (10), CPU and memory information for each run-
ning app and background process (11) and many more. A complete
list of collected data is available on the project website.1

Processing the information collected by Device Analyzer and ex-
tracting higher-level insights from the large corpus of real-world
usage data presents us with a number of challenges ranging from
scalability to consistency and privacy considerations.

1
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In this paper we present our system architecture for collecting
data from a large number of distributed sources that is resilient
against failures of devices. There are six conceptual components to
our system and we describe the operation of each and some of the
problems that arise (Section3). We explain how offline processing
can recover wall clock time in situations where traditionalcollec-
tion methods would fail due to errors during collection or because
of user interference (Section4). We also show how this type of
offline processing fits naturally into our architecture. We conclude
(Section5) with a brief discussion of some of the more general is-
sues and lessons learned, which we think might also apply to other
data collection and analysis projects.

2. BACKGROUND
Many previous projects have made use of volunteer contributions

to large scientific projects. SETI@Home [1] is an early example;
FoldIt [6] is a recent one in which researchers pose a computa-
tionally hard problem—protein folding—as a game which volun-
teers can play on the Internet. In SETI@Home and FoldIt, data
collection is centralised, and processing is distributed.In Device
Analyzer, data collection is decentralised, and data processing is
(largely) centralised, leading to a few key differences. For exam-
ple, there are no real privacy problems in SETI@Home, as data
does not contain personal information; similarly, as data collec-
tion is centralised in SETI@Home, the project does not experience
several difficulties we have experienced in determining an accu-
rate estimate of time. There are similarities too: both SETI@Home
and Device Analyzer run on volunteer computers of dubious prove-
nance, and both projects have experienced difficulties withcen-
tralised components. SETI@Home removed reliance on a database
in favour of storing data in flat files for some parts of their design;
we did so as well in Device Analyzer.

Previous projects have collected data from smartphones. Exam-
ples include the MIT Reality Mining dataset in which 100 Nokia
6600 mobile phones were given to undergraduates [4] and a re-
cent study of application usage of 4,000 Android smartphones [2].
For the Nokia Mobile Data Challenge [8] various information from
200 Nokia N95 phones was collected over the course of one year.
Girardello and Michahelles studied installation and removal of An-
droid applications on 19,000 devices [5].

We believe that the very wide range of data collected, combined
with the length of data collection, sets Device Analyzer apart from
previous studies looking at usage of mobile devices. Most partici-
pants have given us permission to make their data available to other
researchers. We intend to release the dataset in the near future. To
the best of our knowledge, this is the largest, and most detailed,
dataset on smartphone usage to be made publicly available.
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3. DATA COLLECTION AND PROCESSING
Our data collection and processing system can be viewed as six

conceptual components: measurement; on-device processing; col-
lection; server-side soft real-time analysis; archival storage; and
server-side offline analysis. In this section we explain theopera-
tion of Device Analyzer with reference to these components and
highlight some of the principles which might apply more generally
to similar projects. We refer back to these components in ourlater
discussion of design choices.

MeasurementData in Device Analyzer is measured by an ap-
plication running on Android smartphone handsets. The Device
Analyzer application is distributed as a free application on Google
Play and registers with the operating system to receive notifications
when various events occur on the handset. A huge variety of infor-
mation is available in this manner with notifications ranging from
incoming or outgoing calls or texts and installation of new applica-
tions, to changes in volume settings. Other metrics such as the data
counters on network interfaces are not available through a publish-
subscribe interface and so these are polled at a 5 minute interval.

Many devices ship with subtely different or broken software,
which means that reliably measuring and recording usage infor-
mation across an open population of devices requires substantial
engineering effort: relying on the platform- provided SQLite layer
meant having to work around issues with multi-threaded database
accesses on many devices and occasional data corruption on other
handsets. We now store data in flat files. Compressing these files
requires care because some handsets have shipped with a gzipli-
brary that occasionally (and silently) discards data by truncating
files. These problems are specific to the Android platform butwe
expect any project running for an extended period of time with large
numbers of data collection devices to be plagued by similar issues.

Data are stored as key-value pairs. Both values are plain-text and
can contain (practically) arbitrarily long data. A single data point
may contain as little information as the signal level of a WiFi access
point or as much as the timestamps of all images in the device’s
photo library. The keys themselves are organized in a hierarchical
structure to allow for prefix- matching during the analysis phase.

On-device processingIn order to provide feedback and overview
statistics about their device usage to the participant, theapplication
processes data on the device itself. These statistics include the du-
ration of phone calls, number of texts sent and received, historic
battery level, and many more. In this stage we also remove direct
personal identifiers and other sensitive information usinga salted
hash function (Section5).

Collection Building a dataset means that measured information
must be collated at some central point. The Device Analyzer appli-
cation batches measurements and attempts to periodically upload
them to a server using HTTP over SSL. We add a strong check-
sum on every batch of data since we have seen transmission errors
overcome the inbuilt checking in TCP/IP.

Due to the resource-limited nature of mobile phones we delay
uploads until the phone is attached to a charger; users can further
elect to upload only over WiFi connections. The applicationis de-
signed to store data until they have been delivered (and receipt con-
firmed). If a preset maximum amount of data are stored we suspend
data collection until the application was able to upload data.

Archival storage The principle task of the server process is to
reliably receive and record the measured data from devices.We use
a simple ARQ protocol with back-off to recover from transmission
errors. Valid batches of measurements are appended to a flat file
for the device in question. Duplicated data produced by repeated

transmissions from the client are discarded at this point. New de-
vice files are started when the previous one reaches 10MB. Oldfiles
are compressed and moved to a permanent repository location.

Server-side soft real-time analysisLive statistics have proven
to be extremely useful to the project. We provide information as
to the current and overall number of participants to all users and
the Device Analyzer website shows a dynamic map of the world
showing uploads as they happen. We have made much use of these
when presenting the projects to others as a recruitment strategy,
but also as an indicator of overall system health when the mapis
blank. We currently compute these statistics as simple filters which
are executed as incoming data arrives. Crucially, online processing
does not interfere with the primary task of receiving deviceuploads,
and data may be silently dropped in the presence of errors. Wemay
increase the range of live information we provide to participants in
the future as a way of better rewarding their participation.

Server-side offline processingDuring the offline phase we pro-
cess all archived files of a given device in order and feed the data
tuples to a directed graph of stateful processing plug-ins.Each
plug-in exposes its state for other plug-ins to exploit. Forexam-
ple, the screen plug-in tracks “screen on” and “screen off” events
in order to report the state of the device’s screen at any point in time
to other plug-ins that list it as a dependency, e.g. when measuring
data transferred while the screen was on. Prefix matching of keys
allows us to quickly filter relevant data for a given plug-in.

Some of our work on the Device Analyzer dataset requires us to
run simulations of device activity with a large number of varying
parameters. We implemented these simulations as jobs for Apache
Hadoop. We make use of the independence of measurements be-
tween devices: one job reads the output of the plug-in stage for one
device only and uses the included data to run a simulation. The job
outputs a set of results for each combination of parameters that it
evaluated. Hadoop makes it easy to aggregate these results across
all devices based on parameter values for the individual simulation
runs. Our simulations typically run between one minute and one
hour per device, depending on the nature of the simulation. While
Apache Hadoop was not designed to run these types of workloads
on time-series data, we found it to be an easy-to-use framework,
which abstracts away much of the complexity normally associated
with distributed computing.

The final stage of our analysis deals with generating human-
readable statistics over the previously generated data. This may
take the form of textual or graphical representations. We typically
generate graphs and summative statistics using short ad-hoc scripts
written in Python that parse the output of the plug-in or simulation
stages to create graphical representations using matplotlib. In this
final stage we typically use only a few megabytes of input data,
which were generated from several terabytes of raw data.

4. TIMESTAMPING MEASUREMENTS
Android exposes at least five different time sources to the pro-

grammer:uptime is the time span since the device was last turned
on; it does not count time while the device is off. Thereal-time
clock continues counting time while the device is off and tracks
UTC. Wall-clock time is a real-time clock with attached time zone
information; it is used for displaying the local time to the user. Ex-
ternal time sources can be used to set thereal-time clock to a known
good value:network time can be obtained by querying a server for
a reference timestamp andGPS time is a highly accurate source of
timing information available on many Android devices.

The most immediately appealing of these clocks iswall-clock
time, as it represents time the way the user experiences it and al-



lows us to capture diurnal patterns. However, bothreal-time clock
andwall-clock time are subject to automated changes from the cel-
lular network or anetwork time source and are affected by man-
ual changes by the user. An application using these clocks would
record time in a non-linear fashion, which may include overlaps if
the time was set back. In particular, we have frequently observed
devices reporting a date in the 1980s for a short period of time when
they first start up after an operating system upgrade.

To avoid this phenomenon, we timestamp every measurement
with the device’suptime in milliseconds. To know the user’s local
time, we additionally store thewall-clock time when Device Ana-
lyzer starts, and record all adjustments of thewall-clock time when
they occur. Android helpfully provides notifications for this.

Notably, we observed thousands of jumps in the system-reported
uptime across our dataset. These jumps may be a number of min-
utes to many tens of thousands of years either into the futureor
the past. The vast majority of jumps are transient and we can eas-
ily recover the correctuptime. However, a small fraction of jumps
(roughly 1.5%) are not transient and continue increasing monoton-
ically after the jump. As an additional safety measure we period-
ically log the network time obtained from our server.GPS time
provides better accuracy, but requires the app to ask the user for
GPS permissions, which we chose not to do.

We believe that constructing a reliable time source from different
unreliable clocks is a challenge that many other distributed logging
applications face. Indeed, previous work found in 2010 thattime
synchronization “is the most problematic challenge to overcome in
autonomous logging” [9].

We use a plug-in during the server-side offline processing stage
to reconstruct a validwall-clock time for any point in the dataset,
based on theuptime measurements of every data point, thewall-
clock time adjustment events we have collected, and the periodic
network time measurements we collect. Doing this work in the
offline processing stage allows us to improve algorithms andre-
compute timing information after the data was collected.

Figure 1 visualizes the relationship betweenuptime and wall-
clock time. Yellow dots indicatewall-clock time reference points
that are stored on application start and when adjustments are re-
ceived. Line segments indicate the time for which the devicewas
active without restarting (“session”) and connect sequential time
reference points or continue with gradient one until the device turns
off. Ideally, both sources of time agree perfectly and for each sec-
ond thatuptime increases, we observewall-clock time increase by
one second as well. In reality minor corrections will be needed due
to clock skew, which materialize in the graph as lines with gradients
that are slightly different from 1.

We generate a global time frame per session by finding the best-
fit line with gradient 1 and checking how much the best-fit without
the furthest outlier differs. If removing the outlier makesthe best-
fit line move more than 30 seconds inwall-clock time, we remove
the outlier and repeat the first step. Once the fit moves only little,
we use it to generatewall-clock time references. Figure1 shows an
obvious case for one such outlier (marked red).

5. DISCUSSION
In this section we discuss aspects of our work which we believe

address issues that the majority of big data projects need tohandle
in one way or another. We hope that this discussion can help to
identify projects with common goals and provide a stepping stone
to share code, architectural ideas or resources.

Privacy Smartphones contain a lot of private data. As researchers
we have a duty of care to our participants and aim to minimise any
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Figure 1: Relationship of device uptime against wall clock time.
Yellow dots indicate time reference points. Red segments be-
long to an erroneous time after boot and need to be corrected.

intrusion. Our approach is based on both the European legal frame-
work, and the seven principles ofPrivacy by Design, an inclusive
approach to data protection by the Information Commissioner of
Ontario, Canada. Our approach is compatible with a set of recom-
mendations made to researchers in ubiquitous computing [7].

Transparency, consent, and purpose Our data collection is both
transparent and explicitly given by the participant: Device Ana-
lyzer is distributed as a stand-alone application on the Google Play
store; it is never bundled with other software or pre-installed on
devices. We require consent inside the application to activate data
collection and remind the user of on-going data collection once a
month. Users can suspend data collection at any time.

Security Communication between the Device Analyzer applica-
tion and the server is secured using TLS and data is securely stored
on a server hosted by our department.

Access and withdrawal Participants can access data collected
from their smartphone. Due to space constraints the full archive
is not available on the device itself. Instead, it can be downloaded
from the project website. Participants can delete their data and
withdraw from the study at any time from within the application.

Accountability We provide a “quick feedback” feature inside the
application to allow participants to send feedback withoutrevealing
their email address. We also provide a working email addresson
the project website.

Proactive privacy Device Analyzer is designed with a focus on
metadata rather than personal information. For example, wedo not
collect an audio recording of a phone call; we record time, dura-
tion and phone number of the call. Before any data is uploaded
to our server, we preprocess and remove direct personal identifiers
and other sensitive information using a hash function with asalt
randomly chosen during installation.

Privacy by default Participants must explicitly opt-in to reveal
particularly sensitive data items. For example, GSM cell tower
identifiers are, by default, preprocessed by a salted hash function on
the device itself, and any location data collected is, by default, only
available for use by researchers at the University of Cambridge.

Data collection experiencesLow-levelraw data is stored when-
ever possible, rather than interpreting data on the device and storing
the resulting high-level data. For example, we collect the number
of bytes transmitted over a network interface as the OS reports it,
including the 32bit wraparound. This allows us re-extract informa-
tion from the original raw data later if we encounter a bug in our
interpretation code.



Resource use: Users are intimately familiar with their devices
and are quick to uninstall applications that reduce batterylifetime
or consume large amounts of disk space. However, rather than
judging by absolute numbers, users evaluate apps against other
apps that are already installed. The OS provides a list of appli-
cations that use lots of disk space or power. Where an application
ranks on these lists depends therefore heavily on usage patterns.

We designed Device Analyzer to have a low resource footprint,
with a typical power drain reported as 2% of overall device power
consumption. We also limit the amount of disk space Device Ana-
lyzer uses, suspending data collection if necessary.

Error handling: An early version of Device Analyzer prompted
users to intervene when uploads failed. When a provisioningissue
caused our server to be unavailable for several days, the majority
of participants uninstalled the “broken” application; some left bad
reviews on the Play store. Later versions do not prompt the user but
rather try uploading more aggressively.

Trade-off of implementation vs computation complexityOur
analysis framework has no notion of persistence of state between
runs and earlier computations are repeated when a new archive file
is added, even when that would not be strictly necessary.

Previous versions of the analysis framework persisted the inter-
nal state of plug-ins and would restore the state when new data ar-
rived to avoid re-computing older data. While this technique meant
that incoming data resulted in much reduced compute times, we
found that state persistence and the necessary heuristics to deter-
mine which data needed to be re-computed quickly became diffi-
cult to manage. This is particularly true if we account for actions
that influence earlier data, such as when the user changes thetime
on the device, invalidating previously computed results.

Re-computing all data allowed us to greatly simplify plug-ins
and management code in exchange for increased compute times.

Converting event streams to state modelsDevice Analyzer
logs events like “screen on” and “screen off” or “WiFi accesspoint
x is visible”. For most analyses we need to convert a device’sevent
stream into a state model that changes in response to events as time
progresses. As we assume independent devices, our plug-in sys-
tem (Section3) achieves this in a modular way. This allows us to
measure durations that a certain condition was satisfied for, or to
combine the state of multiple plug-ins, e.g. to capture visible WiFi
access points while the screen was on.

The general case involving dependent measurements is harder
and it is unclear how the corresponding architecture might look
like: one might imagine a system that steps through all data sources
in sync with a global time frame, or an iterated solution thatstarts
off assuming independent measurements and then converts towards
a global solution by including changes of neighbouring devices as
they propagate through the system.

Data provenanceAs discussed above, we created an ad-hoc so-
lution to reduce the amount of re-computation needed when new
data arrived. Our solution leveraged the dependency graph of plug-
ins to re-compute results from the raw data. However, we found
this to be insufficient as a holistic solution would need to capture
the true provenance of each computed data item in the form of data
that this item depended on. We would like to investigate generic
provenance APIs which would allow us to capture this information
more systematically [3]. This would allow us to easily determine
when to recalculate results and also to provide better transparency
to users of the derived data.

Collaboration with other researchers We are very much in-
terested in collaborations with other researchers. We are currently

evaluating a mechanism that allows interested parties to recruit a
set of participants and gain access to their raw data stream,allow-
ing them to re-identify the recruited individuals in the dataset. We
are also preparing to publicly release the dataset and are collabo-
rating with researchers to investigate questions of mutualinterest.

If you would like to work with us on the dataset please contact
us with the topic of your research interest. We are interested in
questions that the research community would like to answer using
our dataset. However, due to the nature of the collected raw data
streams, extracting certain types of high-level information may re-
quire substantial coding effort as the common-sense understanding
of a problem may translate into non-trivial states and conditions
that need to be understood when looking at the data in fine detail.
We are exploring this issue and would appreciate any input that
other researchers may have on this issue.

6. CONCLUSIONS
Device Analyzer is a large-scale study of over 12,500 smart-

phone users in the wild. We have described our collection andpro-
cessing architecture in terms of measurement, on-device process-
ing, collection, server-side soft real-time analysis, archival storage
and server-side offline analysis. Processing timestamps shows a
good example of the problems we faced in terms of information
collection and recovering from faulty data. Our plug-in architecture
allows us to easily integrate refinement steps such as this one into
our processing system. Our experiences suggest some more gen-
eral questions which might apply to other similar projects.We are
interested in identifying these projects and investigating whether
our infrastructure can be applied more generally.
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