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ABSTRACT

We collected usage information from 12,500 Android devices
the wild over the course of nearly 2 years. Our dataset aomtai
53 billion data points from 894 models of devices running 88
sions of Android. Processing the collected data presentsréer
of challenges ranging from scalability to consistency ardagy
considerations. We present our system architecture féeatmin
and analysis of this highly-distributed dataset, discuss dur sys-
tem can reliably collect time-series data in the presenamoéli-
able timing information, and discuss issues and lessonsdddhat
we believe apply to many other big data collection projects.

1. INTRODUCTION

In the Device Analyzer project we are building a dataset that
captures real-world usage of Android smartphones. We hega b
collecting detailed usage information in the wild for ngétlyears
from 894 models of devices running 687 versions of AndroideiO
12,500 users from 167 countries have installed a copy ofdfte s
ware from the Android market and consented to their datagbein
collected. In total, our dataset covers over 1,450 phomesyef
usage, with days of inactivity removed. 10,320 participastn-
tributed for at least one day, 3,680 users contributed ni@e one
month of usage information and over and 820 participatecafor
least six months. The dataset contains 53 billion data point

We want to share this dataset with industry and other reseesc
Please contact us about accessing the dataset or potei@ddos
rations that align with your area of research.

Device Analyzer captures a time-series log of more than %00 d
ferent events in as much detail as is possible on Android.eker
ample, Device Analyzer not only records when a device casnec
to a WiFi access point; it records all the details captureémwh
ever a WiFi scan occurs, including AP MAC address, SSID, sig-
nal strength, frequency, and capabilities. Events recbindelude
changes to device settings (33 event types), installedcapioins
(17), system characteristics (29), bluetooth devices, (&1fi net-
works (11), disk storage (6), charging characteristicsté¢phony
(20), data usage (10), CPU and memory information for eagh ru
ning app and background process (11) and many more. A caanplet
list of collected data is available on the project website.

Processing the information collected by Device Analyzet exx
tracting higher-level insights from the large corpus ofl+earld
usage data presents us with a number of challenges rangimg fr
scalability to consistency and privacy considerations.
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In this paper we present our system architecture for catigct
data from a large number of distributed sources that isieesil
against failures of devices. There are six conceptual coes to
our system and we describe the operation of each and some of th
problems that arise (Secti@). We explain how offline processing
can recover wall clock time in situations where traditiocallec-
tion methods would fail due to errors during collection océese
of user interference (Sectiof). We also show how this type of
offline processing fits naturally into our architecture. Wadude
(Section5) with a brief discussion of some of the more general is-
sues and lessons learned, which we think might also applihtr o
data collection and analysis projects.

2. BACKGROUND

Many previous projects have made use of volunteer contoibsit
to large scientific projects. SETI@Homg fis an early example;
Foldlt [6] is a recent one in which researchers pose a computa-
tionally hard problem—protein folding—as a game which voelu
teers can play on the Internet. In SETI@Home and Foldlt, data
collection is centralised, and processing is distributedDevice
Analyzer, data collection is decentralised, and data [m%og is
(largely) centralised, leading to a few key differencesr &mam-
ple, there are no real privacy problems in SETI@Home, as data
does not contain personal information; similarly, as datkec-
tion is centralised in SETI@Home, the project does not ézpee
several difficulties we have experienced in determining ecua
rate estimate of time. There are similarities too: both SEMbme
and Device Analyzer run on volunteer computers of dubiooser
nance, and both projects have experienced difficulties et
tralised components. SETI@Home removed reliance on aaksgab
in favour of storing data in flat files for some parts of theiside;
we did so as well in Device Analyzer.

Previous projects have collected data from smartphonesmEx
ples include the MIT Reality Mining dataset in which 100 Neki
6600 mobile phones were given to undergradua#safd a re-
cent study of application usage of 4,000 Android smartphde
For the Nokia Mobile Data Challeng8][various information from
200 Nokia N95 phones was collected over the course of one year
Girardello and Michahelles studied installation and reaht@§ An-
droid applications on 19,000 devices].[

We believe that the very wide range of data collected, coetbin
with the length of data collection, sets Device Analyzerrafram
previous studies looking at usage of mobile devices. Moxtiqgia
pants have given us permission to make their data availaloher
researchers. We intend to release the dataset in the naee.f0b
the best of our knowledge, this is the largest, and most lddtai
dataset on smartphone usage to be made publicly available.


http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm

3. DATACOLLECTIONAND PROCESSING

Our data collection and processing system can be viewedas si
conceptual components: measurement; on-device progessih
lection; server-side soft real-time analysis; archivarage; and
server-side offline analysis. In this section we explaindpera-
tion of Device Analyzer with reference to these components a
highlight some of the principles which might apply more geifig
to similar projects. We refer back to these components ifatar
discussion of design choices.

MeasurementData in Device Analyzer is measured by an ap-
plication running on Android smartphone handsets. The &evi
Analyzer application is distributed as a free applicationGnogle
Play and registers with the operating system to receivéicatibns
when various events occur on the handset. A huge varietyf@fin
mation is available in this manner with notifications ramgfrom
incoming or outgoing calls or texts and installation of neaplica-
tions, to changes in volume settings. Other metrics sucheaddta
counters on network interfaces are not available througlbéigh-
subscribe interface and so these are polled at a 5 minuteahte

Many devices ship with subtely different or broken software
which means that reliably measuring and recording usag®-inf
mation across an open population of devices requires sufzta
engineering effort: relying on the platform- provided S@Llayer
meant having to work around issues with multi-threadedtuteste
accesses on many devices and occasional data corrupticthemn o
handsets. We now store data in flat files. Compressing these fil
requires care because some handsets have shipped with & gzip
brary that occasionally (and silently) discards data bydating
files. These problems are specific to the Android platformviseit
expect any project running for an extended period of timé laitge
numbers of data collection devices to be plagued by sinskards.

Data are stored as key-value pairs. Both values are plafratel
can contain (practically) arbitrarily long data. A singlata point
may contain as little information as the signal level of a Wiécess
point or as much as the timestamps of all images in the device’
photo library. The keys themselves are organized in a fuikical
structure to allow for prefix- matching during the analydispe.

On-device processingn order to provide feedback and overview
statistics about their device usage to the participantagpication
processes data on the device itself. These statisticcdache du-
ration of phone calls, number of texts sent and receivedotiis
battery level, and many more. In this stage we also remowzdir
personal identifiers and other sensitive information usirgalted
hash function (Sectioh).

Collection Building a dataset means that measured information
must be collated at some central point. The Device Analygplia
cation batches measurements and attempts to periodigataad
them to a server using HTTP over SSL. We add a strong check-
sum on every batch of data since we have seen transmissms err
overcome the inbuilt checking in TCP/IP.

Due to the resource-limited nature of mobile phones we delay
uploads until the phone is attached to a charger; users ctdrefu
elect to upload only over WiFi connections. The applicai®de-
signed to store data until they have been delivered (andptemm-
firmed). If a preset maximum amount of data are stored we sdspe
data collection until the application was able to uploacdat

Archival storage The principle task of the server process is to
reliably receive and record the measured data from dewWvesise
a simple ARQ protocol with back-off to recover from transsiis
errors. Valid batches of measurements are appended to deflat fi
for the device in question. Duplicated data produced byatguk

transmissions from the client are discarded at this poirgw Ne-
vice files are started when the previous one reaches 10MHil€dd
are compressed and moved to a permanent repository location

Server-side soft real-time analysid.ive statistics have proven
to be extremely useful to the project. We provide informatas
to the current and overall number of participants to all siserd
the Device Analyzer website shows a dynamic map of the world
showing uploads as they happen. We have made much use of these
when presenting the projects to others as a recruitmernegya
but also as an indicator of overall system health when the imap
blank. We currently compute these statistics as simplediltdich
are executed as incoming data arrives. Crucially, onlioegssing
does not interfere with the primary task of receiving devipads,
and data may be silently dropped in the presence of errorsnaye
increase the range of live information we provide to pgoicits in
the future as a way of better rewarding their participation.

Server-side offline processinduring the offline phase we pro-
cess all archived files of a given device in order and feed #te d
tuples to a directed graph of stateful processing plug-iBsch
plug-in exposes its state for other plug-ins to exploit. Exam-
ple, the screen plug-in tracks “screen on” and “screen oféngés
in order to report the state of the device’s screen at anyt potime
to other plug-ins that list it as a dependency, e.g. when ungas
data transferred while the screen was on. Prefix matchingys k
allows us to quickly filter relevant data for a given plug-in.

Some of our work on the Device Analyzer dataset requires us to
run simulations of device activity with a large number ofyiag
parameters. We implemented these simulations as jobs fachp
Hadoop. We make use of the independence of measurements be-
tween devices: one job reads the output of the plug-in stagenie
device only and uses the included data to run a simulatioa.jdln
outputs a set of results for each combination of paramefetsitt
evaluated. Hadoop makes it easy to aggregate these resuss a
all devices based on parameter values for the individuallsition
runs. Our simulations typically run between one minute ane o
hour per device, depending on the nature of the simulatiohiléV
Apache Hadoop was not designed to run these types of workload
on time-series data, we found it to be an easy-to-use framkewo
which abstracts away much of the complexity normally asdedi
with distributed computing.

The final stage of our analysis deals with generating human-
readable statistics over the previously generated datas rihy
take the form of textual or graphical representations. Vigecally
generate graphs and summative statistics using short@dehipts
written in Python that parse the output of the plug-in or datian
stages to create graphical representations using mabplbilthis
final stage we typically use only a few megabytes of input data
which were generated from several terabytes of raw data.

4. TIMESTAMPING MEASUREMENTS

Android exposes at least five different time sources to tloe pr
grammer:uptime is the time span since the device was last turned
on; it does not count time while the device is off. Titeal-time
clock continues counting time while the device is off and tracks
UTC. Wall-clock time is areal-time clock with attached time zone
information; it is used for displaying the local time to theeu Ex-
ternal time sources can be used to setréaetime clock to a known
good value:network time can be obtained by querying a server for
a reference timestamp a@PStimeis a highly accurate source of
timing information available on many Android devices.

The most immediately appealing of these clocksvéasl-clock
time, as it represents time the way the user experiences it and al-



lows us to capture diurnal patterns. However, hbratd-time clock
andwall-clock time are subject to automated changes from the cel-
lular network or anetwork time source and are affected by man-
ual changes by the user. An application using these clocksdwvo
record time in a non-linear fashion, which may include cxeslif

the time was set back. In particular, we have frequently vese
devices reporting a date in the 1980s for a short period & tilnen
they first start up after an operating system upgrade.

To avoid this phenomenon, we timestamp every measurement
with the device’suptime in milliseconds. To know the user’s local
time, we additionally store theall-clock time when Device Ana-
lyzer starts, and record all adjustments of watl-clock time when
they occur. Android helpfully provides natifications foish

Notably, we observed thousands of jumps in the system-tegor
uptime across our dataset. These jumps may be a number of min-
utes to many tens of thousands of years either into the fudure
the past. The vast majority of jumps are transient and we aan e
ily recover the correctiptime. However, a small fraction of jumps
(roughly 1.5%) are not transient and continue increasingotom-
ically after the jump. As an additional safety measure weoger
ically log the network time obtained from our serverGPS time
provides better accuracy, but requires the app to ask thefoase
GPS permissions, which we chose not to do.

We believe that constructing a reliable time source frorfed#it
unreliable clocks is a challenge that many other distrithldgging
applications face. Indeed, previous work found in 2010 timaé
synchronization “is the most problematic challenge to coare in
autonomous logging”q].

We use a plug-in during the server-side offline processiagest
to reconstruct a valigvall-clock time for any point in the dataset,
based on theiptime measurements of every data point, thall-
clock time adjustment events we have collected, and the periodic
network time measurements we collect. Doing this work in the
offline processing stage allows us to improve algorithms @ad
compute timing information after the data was collected.

Figure 1 visualizes the relationship betweeptime and wall-
clock time. Yellow dots indicatevall-clock time reference points
that are stored on application start and when adjustmentsear
ceived. Line segments indicate the time for which the dewias
active without restarting (“session”) and connect segaktime
reference points or continue with gradient one until théaketurns
off. Ideally, both sources of time agree perfectly and farhesec-
ond thatuptime increases, we obserweall-clock time increase by
one second as well. In reality minor corrections will be rexedue
to clock skew, which materialize in the graph as lines withdignts
that are slightly different from 1.

We generate a global time frame per session by finding the best
fit line with gradient 1 and checking how much the best-fit with
the furthest outlier differs. If removing the outlier makég best-
fit line move more than 30 secondsvimll-clock time, we remove
the outlier and repeat the first step. Once the fit moves ottlg,li
we use it to generatwall-clock time references. Figurgé shows an
obvious case for one such outlier (marked red).

5. DISCUSSION

In this section we discuss aspects of our work which we believ
address issues that the majority of big data projects nebdrtdle
in one way or another. We hope that this discussion can help to
identify projects with common goals and provide a steppioge
to share code, architectural ideas or resources.

Privacy Smartphones contain a lot of private data. As researchers
we have a duty of care to our participants and aim to minimmse a
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Figure 1: Relationship of device uptime against wall clockitne.
Yellow dots indicate time reference points. Red segments be
long to an erroneous time after boot and need to be corrected.

intrusion. Our approach is based on both the European legakf

work, and the seven principles Bfivacy by Design, an inclusive

approach to data protection by the Information Commissiafe
Ontario, Canada. Our approach is compatible with a set afinec
mendations made to researchers in ubiquitous compufing [

Transparency, consent, and purpose Our data collection is both
transparent and explicitly given by the participant: Devina-
lyzer is distributed as a stand-alone application on theg&oBlay
store; it is never bundled with other software or pre-insthion
devices. We require consent inside the application to @etidata
collection and remind the user of on-going data collectioneoa
month. Users can suspend data collection at any time.

Security Communication between the Device Analyzer applica-
tion and the server is secured using TLS and data is secuoegds
on a server hosted by our department.

Access and withdrawal Participants can access data collected
from their smartphone. Due to space constraints the fuliieec
is not available on the device itself. Instead, it can be doaaed
from the project website. Participants can delete theia @atd
withdraw from the study at any time from within the applicati

Accountability We provide a “quick feedback” feature inside the
application to allow participants to send feedback witheuealing
their email address. We also provide a working email addoess
the project website.

Proactive privacy Device Analyzer is designed with a focus on
metadata rather than personal information. For examplelonet
collect an audio recording of a phone call; we record timeadu
tion and phone number of the call. Before any data is uploaded
to our server, we preprocess and remove direct persondlfiden
and other sensitive information using a hash function witak
randomly chosen during installation.

Privacy by default Participants must explicitly opt-in to reveal
particularly sensitive data items. For example, GSM celleio
identifiers are, by default, preprocessed by a salted hastidn on
the device itself, and any location data collected is, bydkfonly
available for use by researchers at the University of Cadigleri

Data collection experiences.ow-levelraw data is stored when-
ever possible, rather than interpreting data on the devidetoring
the resulting high-level data. For example, we collect thember
of bytes transmitted over a network interface as the OS tejipr
including the 32bit wraparound. This allows us re-extraébima-
tion from the original raw data later if we encounter a bug im o
interpretation code.



Resource use: Users are intimately familiar with their devices
and are quick to uninstall applications that reduce battéatime

evaluating a mechanism that allows interested partiescwitea
set of participants and gain access to their raw data strelon-

or consume large amounts of disk space. However, rather thaning them to re-identify the recruited individuals in the akst. We

judging by absolute numbers, users evaluate apps agaimst ot
apps that are already installed. The OS provides a list ofi-app
cations that use lots of disk space or power. Where an apiplica
ranks on these lists depends therefore heavily on usage mstt

We designed Device Analyzer to have a low resource footprint
with a typical power drain reported as 2% of overall device/@o
consumption. We also limit the amount of disk space Devica-An
lyzer uses, suspending data collection if necessary.

Error handling: An early version of Device Analyzer prompted
users to intervene when uploads failed. When a provisioisisige
caused our server to be unavailable for several days, therityaj
of participants uninstalled the “broken” application; sotaft bad
reviews on the Play store. Later versions do not prompt tBelug
rather try uploading more aggressively.

Trade-off of implementation vs computation complexityOur
analysis framework has no notion of persistence of statedsat
runs and earlier computations are repeated when a new affiiiv
is added, even when that would not be strictly necessary.

Previous versions of the analysis framework persistedrites-i
nal state of plug-ins and would restore the state when neavatat
rived to avoid re-computing older data. While this techeigueant
that incoming data resulted in much reduced compute times, w
found that state persistence and the necessary heuristoeter-
mine which data needed to be re-computed quickly became diffi
cult to manage. This is particularly true if we account foti@ts
that influence earlier data, such as when the user changésnthe
on the device, invalidating previously computed results.

Re-computing all data allowed us to greatly simplify plug-i
and management code in exchange for increased compute times

Converting event streams to state model®evice Analyzer
logs events like “screen on” and “screen off” or “WiFi accesint
X is visible”. For most analyses we need to convert a devieesnt
stream into a state model that changes in response to etittsea
progresses. As we assume independent devices, our plyg-in s
tem (SectiorB) achieves this in a modular way. This allows us to
measure durations that a certain condition was satisfiedfdio
combine the state of multiple plug-ins, e.g. to captureblésWwiFi
access points while the screen was on.

are also preparing to publicly release the dataset and debco
rating with researchers to investigate questions of muideiest.

If you would like to work with us on the dataset please contact
us with the topic of your research interest. We are inteceie
questions that the research community would like to answigrgu
our dataset. However, due to the nature of the collected etev d
streams, extracting certain types of high-level informatnay re-
quire substantial coding effort as the common-sense utathelisig
of a problem may translate into non-trivial states and ctom
that need to be understood when looking at the data in finél.deta
We are exploring this issue and would appreciate any inpait th
other researchers may have on this issue.

6. CONCLUSIONS

Device Analyzer is a large-scale study of over 12,500 smart-
phone users in the wild. We have described our collectiornpaod
cessing architecture in terms of measurement, on-devineeps-
ing, collection, server-side soft real-time analysishara storage
and server-side offline analysis. Processing timestampsssh
good example of the problems we faced in terms of information
collection and recovering from faulty data. Our plug-intatecture
allows us to easily integrate refinement steps such as tleisnto
our processing system. Our experiences suggest some more ge
eral questions which might apply to other similar projette are
interested in identifying these projects and investigativhether
our infrastructure can be applied more generally.
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