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Abstract
We present a model targeted at practical, wide-scale de-

ployment which produces an ongoing breakdown of building
energy consumption. We argue that wide-scale deployment
is practical due to its reliance only on commonly available
sensor information and crowd-sourced inventory data. The
results for our own building over the previous 10 months
show many of the trends seen in the building’s true, me-
tered energy consumption and we find our model predicts
long term averages within 10% of the true value in some
scenarios. We further use our model to estimate the potential
impact of some energy saving scenarios.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Misc.

General Terms
Measurement, Economics

Keywords
Personal Energy Meter

1 Introduction
Organisations with large and diverse estates face many

challenges as they attempt to reduce building energy con-
sumption. One key issue is that it is difficult to know where
to apply limited resources for maximum benefit. We are
seeking ways to provide information for planners in this sit-
uation by deploying a practical sensor-driven system which
produces an itemised, model-based breakdown of an individ-
ual building’s energy consumption.

Many current modelling systems focus on exploring de-
sign options or performing one-off examinations of build-
ings. Although capable of producing accurate results they
require expert users and detailed building survey informa-
tion. We feel that the resources to model and profile every
building in a large estate are beyond many organisations.
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Display Energy Certificates (DECs) fall at the other end
of the spectrum and are cheap and easy to deploy. However,
the very lack of operational detail which makes them easy
to deploy also makes them uninformative for detailed plan-
ning. In this paper we study the energy consumption of the
Computer Laboratory at Cambridge University which has an
electricity use of 180 kWh/m2/year. This fares particularly
unfavourably in the DEC comparison to a standard building
of type ‘University Campus’ with a reference consumption
of 80 kWh/m2/year. The DEC efficiency rating gives little
information to estate manager as to what proportion of this
discrepancy is due to inefficiency and what is due to building
use.

In this paper we present a middle-ground tool for mod-
elling the energy consumption of a building. We argue that
the our scheme produces useful information about building
energy consumption whilst relying only on data that is eas-
ily gathered and sensing which could plausibly be done on
a large scale. We first explain the principles of our model
and differentiate it from existing solutions (Section 2). We
use a tool called OpenRoomMap to crowd-source inventory
data in a scalable fashion (Section 3) and provide a number
of means to estimate the energy traces of particular build-
ing aspects (Section 4). We present our results (Section 5)
which predict an average consumption within around 10%
of metered consumption. We believe that the fact that we
can reproduce many of the dynamic features of the build-
ing’s energy consumption is a good indicator that the model
is giving some valuable insight. We therefore use the model
to examine energy consumption under a number of potential
energy saving scenarios (Section 6).

This work is part of our investigations into the concept of
a Personal Energy Meter under our Computing for the Future
of the Planet research theme [4]. We envisage a system that
collects information about our daily consumption and pro-
vides breakdowns of the energy costs of activities to help us
target areas for reduction. In previous work we outlined a
mechanism for desegregating the total energy consumption
of a building by user and apportioning it to an individual [3].
Here, we explore disaggregation by function, which is valu-
able not only to building managers concerned with reducing
its overall cost but also to individuals who seek to understand
why they have been allocated a certain share.



2 Building modelling tools
Our model operates by estimating the energy consump-

tion for categories of devices in the building inventory and
we use a variety of estimation methods to model different
energy use patterns. The summation of energy consumption
for each category is then compared with the recorded energy
consumption from the building’s electricity and gas meters.

There are dozens of existing energy modelling packages,
though most target the design stage and require significant
measurement and input data to function [1]. Perhaps the best
known example is the DOE-2 software.1 produced by the
US Department of Energy DOE-2 uses hourly weather data
to calculate the hour-by-hour performance and response of
a building with a known description; heat gains to building
spaces are converted to cooling or heating loads on the air
using pre-calculated “weighting factors”. An accessible in-
terface to DOE-2 is provided through the eQuest package.
eQuest is designed to make it easy for a single user to capture
a building design and parameters in contrast to our approach
in which we collect data from a large number of users.

An alternative “heat balance” method uses a detailed heat
model of the thermal transfer processes in the rooms to cal-
culate loads from heat gains; this is generally slower but
more accurate. The best known example is the Building
Load Analysis and System Thermodynamics (BLAST) sys-
tem, also supported by the US government. It was developed
for predicting energy consumption and systems performance
and costs of new or retrofit building designs. We use a very
simplified form of this method for our predictions.

EnergyPlus2 combines many of the features from these
programs. It uses a modular system to permit the construc-
tion of detailed building models. Many new building tech-
nologies and building and systems simulation models are ac-
cessible which represents a significant step forwards in terms
of both computational techniques and program structure [2].
TRNSYS3 is a general simulation package which makes use
of modules to model a wide range of systems. The modular
and extensible nature of these two systems provides a huge
degree of flexibility and both would be candidates for hosting
modules implementing the various aspects of our model.

3 Crowd-sourcing inventory information
Modern buildings contain a large number of widely-

distributed electrical devices. This makes collecting detailed
inventory information a tedious and time-consuming task.
Furthermore, keeping abreast of changes to maintain the cor-
rectness of this information over time is implausible in many
circumstances.

Fortunately, a highly accurate inventory is not necessary
for our purposes. The vast majority of energy consuming
devices are low power (electrical) devices consuming less
than 100 W. Individually, each device is less than 0.05% of
the total building consumption. However, their combined
consumption does amount to a significant figure.

1http://www.doe2.com/
2http://apps1.eere.energy.gov/buildings/

energyplus/
3http://sel.me.wisc.edu/trnsys/

Figure 1. Building occupants can use the OpenRoomMap
web interface to edit the building map.

From this we conclude that our inventory need not con-
tain every single device as long as it contains a representa-
tive sample and an estimate of its coverage. Obviously, our
confidence in the sample will increase with its size.

We use our OpenRoomMap system [6] to collect the
building inventory data from the building’s users themselves.
OpenRoomMap displays through a web-based interface a
plan view of the building contents which is editable by the
occupants themselves (Figure 1). This data has found vari-
ous uses ranging from assisting when locating printers and
copiers to displaying layout information for room bookings.
These varied uses have encouraged occupants to map public
and shared spaces in addition to private offices. We estimate
that around 70% of the building has been mapped.

OpenRoomMap provides a crucial part of our argument
about the practicality of our system. The crowd-sourcing
aspect of our data collection means it is much more likely
that a representative selection of the building inventory will
be collected than if we attempted to persuade every building
manager to perform a survey manually. Examples such as
OpenStreetMap highlight the effectiveness of recruiting just
a small percentage of a large population for such participa-
tory sensing tasks.

4 Energy estimation methods
We developed a number of energy estimation methods to

model different device usage characteristics.
Constant rate The constant rate method simply assumes

a continuous consumption for a device. This is appropri-
ate for always-on devices such as safety lighting, VOIP tele-
phones, and printer standby power. We measure the energy
consumption of an example of each device using a plug-in
power meter and assume this to apply to all devices of the
same type.

Timed The building management system in our building
controls the lighting in public areas (approximately 12 kW)
according to a timer. This method applies our measured en-
ergy consumption of each device type at a constant rate dur-
ing the programmed on periods.



Sub-metered It is increasingly common to install sub-
metering to monitor the consumption of large energy con-
sumers within a building. In our building for example we
used sub-meters to profile the energy consumption of our
machine rooms and associated air-conditioning. These ac-
count for an average of 89 kW which is a significant pro-
portion. One should note that sub-metering by building re-
gion (e.g. corridor) is not directly useful here because many
different types of device will be connected to the same cir-
cuit. This helps provide a spatial breakdown of energy con-
sumption but not an itemised one. Similarly, the problem of
providing an itemised breakdown cannot be fully solved by
sub-metering large energy consumers. For example, we es-
timate our office-style lighting consumes more than 100 kW
(when all switched on). Direct measurement of this would
require metering every lighting circuit in the building and
then removing the consumption of all the other (timed) light-
ing from this total.

4.1 Occupancy
Some devices in the building are switched on and off

by occupants and so we provide a method to modulate the
power estimate by the number of people in the building. This
method scales the total power consumption of a set of de-
vices by the proportion of the maximum expected building
users currently present. We apply this method to devices
such as computer monitors and office lighting.

As one might expect, building occupancy varies signifi-
cantly over time. We expect low occupancy over weekends
and holiday periods but also due to less predictable causes
such as travel disruption (the UK transport infrastructure
copes poorly with snow for example). For this reason we
expect some form of sensor data will be required for occu-
pancy estimation.

The method we use is based on the access logs from the
security system [3]. This is a somewhat broad approxima-
tion in our building because 1) the system is based around
electronic door locks and so many people can pass through
a door for a single access entry; and 2) the system only au-
thenticates ingress events and so we only see generic unlock
events rather than (anonymised) identifiers when someone
exits. Alternative or complementary approaches might be
to determine occupancy based on wireless traffic from smart
phones or workstation activity or to use GPS to determine
when a user is en-route to or from the building.

Figure 2 shows our estimated occupancy trace for 2008.
Dark colours correspond to a large number of people in the
building and lighter colour correspond to fewer people. It
shows quiet days which correspond to UK public holidays
and a general ebb and flow corresponding to term and vaca-
tion periods. We note a number of exceptions such as pub-
lic holidays during term time (which the university does not
observe) and the especially quiet period for the two weeks
surrounding Christmas.

4.2 Heating, Cooling and Ventilation (HVAC)
The final method provides an simple estimate of the en-

ergy consumption of the building’s HVAC system. Our ap-
proach is to estimate the amount of energy required to keep
the interior of the building at a desired set-point temperature

P(t)

Interior Wall Exterior
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T = 20i
o

Qw

Hi He

Tw(t) Te(t)

Figure 3. Thermal model for the building HVAC

(Ti) given the heat input in to the building from device en-
ergy use (including computers) and the heat loss (or gain)
due to the outdoor temperature (Te). We model the system as
thermal energy movement between three bodies: 1) the inte-
rior, 2) the exterior walls, 3) the exterior (Figure 3). Thus,
the exterior walls are acting as a buffer between the interior
and exterior temperatures. We measure outdoor temperature
with a weather station on the roof of our building.4

dQi

dt
= −Hi(Ti−Tw(t))+P(t)

dQw

dt
= Cw

dTw

dt
= −He(Tw(t)−Te(t))+He(Ti−Tw(t))

The first of these equations gives the HVAC load—the en-
ergy required to maintain the internal fixed point temperature
Ti (which for our building is an average of 21 ◦C). The (nu-
merical) integral of the second equation tracks the tempera-
ture of the wall over time. A negative HVAC load indicates
that energy must be put into the building to maintain the tem-
perature (heating demand), and a positive HVAC load indi-
cates that energy must be removed (cooling demand). Thus,
we can interpret the load in three different ways:

1.
∣∣∣ dQi

dt

∣∣∣ is the total power required to maintain the building
temperature;

2. max(0, dQi
dt ) is the total power required to cool the

building;

3. max(0,− dQi
dt ) is the total power required to heat the

building.
Hi and He correspond to the leakiness of the wall towards

the interior and exterior of the building respectively. These
are derived from multiplying the surface area (m2) by the
thermal transmittance or U-value (W/m2/K). We manually
estimated the surface area (40,000 m2) but such information
could also be derived from the floor area in OpenRoomMap
and an estimate of ceiling height and roof-pitch. U-values
are normally quoted for a single surface and we adopt a typ-
ical value suggested by MacKay for best building methods
of 0.15 [5]—our building won an architectural award for its
heating and cooling.5 Our model utilises a U-value for the
inner shell (Ui) of the wall and a U-value for the outer shell
(Ue) and so we further assume that the outer shell has 2.5

4http://www.cl.cam.ac.uk/research/dtg/weather/
5http://www.cabe.org.uk/case-studies/

william-gates-building/design
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Figure 2. Estimated occupancy trace for 2008

times the thermal resistance of the inner shell. Given that
U-values combine in the same manner as resistors in paral-
lel 1/U = 1/Ui + 1/Ue and substituting Ue = 2.5Ui we find
Ui = 3.5U = 0.53 and Ue = 3.5U/2.5 = 0.21.
5 Results

Figure 4 shows the model output and recorded electricity
consumption in kW for November 2009 to August 2010. The
dark ‘metered consumption’ line is the half-hourly measure-
ments of electricity consumption as recorded by the electric-
ity company. The categories in the breakdown are as follows:

• HVAC is the output of the heat model for the building.
We initially consider only cooling to account for elec-
tricity usage.

• Lights includes lighting within offices (modulated ac-
cording to the occupancy of the building) and in public
areas (modulated according to a timer function).

• PCs covers the energy use of personal computers and
monitors in offices. We assume that the PC itself is left
on continuously whereas the monitors are switched on
or off according to the occupancy of the building. Both
are assumed to consume 70 W.

• Machine rooms considers servers, uninterruptible
power supplies and air conditioning units in our ma-
chine rooms. This is a mixture of sub-metered readings
and manual estimates.

• Other contains minor items from the OpenRoomMap
inventory such as printer idle power, telephones and a
small number of electric heaters.

Notable from the graph is that the predicted consumption
displays similar trends to the true measured value. Over the
annual period we notice the load on the HVAC system in-
crease during the summer months and fall to nothing over
the Christmas period when the building is quiet and the ex-
terior temperature is low. Figure 5 shows a two week period
in January. The peaks in consumption during working week-
days are clear in the model and we can see from the break-
down that this is mostly due to lights being switched on (in
offices). Figure 6 shows a two week period in July. In this
case the HVAC energy usage is significantly higher due to
higher outdoor temperatures.

We now consider the effect of including heating in our
model. We assume that our heating system is 70% efficient

Scenario Av. Power Change Saving
Metered 275 kW
Current conditions 213 kW
Normal comp. 118 kW 95 kW £83,000
PCs off 206 kW 7 kW £6,100
LED lighting 192 kW 21 kW £18,000

Figure 7. Predicted annual energy savings

and from the gas consumption over the summer when no
space-heating is needed we derive an additional cost of 1.4
kW for water heating which we include in the ‘Other’ cate-
gory. We see what seems to be a more significant deviation
from the measured trace (Figure 8, showing both electricity
and gas). However, this is due in part to the fact that the
gas consumption data for our building is measured monthly
and interpolated linearly so day-scale changes in consump-
tion as predicted by our HVAC model are not reflected in the
measured consumption trace. There are many factors which
we could alter to obtain a better fit, such as changing the U-
value of the building, the efficiency of the heating system or
the fixed point temperature but we refrain from doing so for
fear of over-fitting what is a very simple model.

6 Energy saving scenarios
The itemisation produced by the model suggests three big

areas in which we could save energy: machine rooms, PCs
and lighting. We now use our model to consider these sce-
narios (Figures 7 and 9).

• Normal computing We estimate the energy consump-
tion of our building if (like many other buildings on the
estate) it contained no significant server infrastructure
and a single workstation per occupant.

• PCs off We estimate the impact of building occupants
switching off all workstations when not in the building.

• LED lighting We estimate the impact of switching to
LED lighting, replacing our current 50 lm/W lighting
with LED equivalents achieving 160 lm/W6.

Finally, we return to our goal of producing a modelling
tool which can be automatically applied across many build-

6The US Department of Energy estimates the 160 lm/W LED
lighting will be market-ready by 2025: http://www1.eere.
energy.gov/buildings/ssl/efficacy.html
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Figure 4. Daily breakdown (Nov 09 to Aug 10) shows trends in electricity consumption are correctly estimated
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Figure 5. Half-hourly breakdown (Jan 10): electricity requirements during winter vary mostly due to lighting needs
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Figure 6. Half-hourly breakdown (Jul 2010): cooling dominates the electricity requirements during summer

ings and consider the sensitivity of the model to the building
U-value. Figure 10 shows the result of running the simu-
lation with 4 different U-values. These results show that a
good choice of value is probably around our choice of 0.15.
Its clear that the wrong choice of U-value can have a signifi-
cant impact on the quality of fit. However, it is easy to notice
that the fit is incorrect. One technique might be to collect
data as to the point in the year when the building’s heating
system is first switched on for a significant period of time and
to adjust the building U-value to produce a similar effect.

7 Conclusions and Future Work
Producing an explanation for a building’s energy con-

sumption is an important first step to improving efficiency.
However, for large estates it is impractical to produce de-
tailed engineering models of every building’s energy con-

sumption. We have described a modelling technique which
we believe could be practically applied across many build-
ings. Minimising the effort involved in initial data collection
is important to this goal and so we use OpenRoomMap to
crowd-source this information from building users. We have
also described the different ways in which we provide a sys-
tem which can operate with a minimal amount of live sens-
ing information but could still extend to accommodate more
sources as they are installed.

There are many potential ways to improve the modelling
and we are most interested in those techniques which re-
quire little additional data input. Useful examples might
be to modulate building lighting with reference to natural
light levels using more detailed weather data and informa-
tion from OpenRoomMap about the positions of windows
in offices. OpenRoomMap data could also provide more as-
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Figure 8. The model underestimates combined heating and cooling energy consumption during winter
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Figure 9. Increases in heating load and decreases in cooling load follow from energy savings
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Figure 10. Varying the choice of U-value has a significant impact on the model prediction

sistance in estimating building parameters by providing esti-
mates of building surface area and the relative ratios of walls,
windows and roofing.

We are hopeful that we can make further extensions to the
model as required by other buildings without compromising
our goal of a scalable, practical system and intend to release
our code either as a standalone package or integrated into an
existing modelling framework.
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