
Learning units-of-measure from scientific code
Matthew Danish

University of Cambridge
Cambridge, UK
mrd45@cam.ac.uk

Miltiadis Allamanis
Microsoft Research

Cambridge, UK
miallama@microsoft.com

Marc Brockschmidt
Microsoft Research

Cambridge, UK
mabrocks@microsoft.com

Andrew Rice
University of Cambridge

Cambridge, UK
acr31@cam.ac.uk

Dominic Orchard
University of Kent
Canterbury, UK

d.a.orchard@kent.ac.uk

Abstract—CamFort is our multi-purpose tool for lightweight
analysis and verification of scientific Fortran code. One core
feature provides units-of-measure verification (dimensional anal-
ysis) of programs, where users partially annotate programs with
units-of-measure from which our tool checks consistency and
infers any missing specifications. However, many users find it
onerous to provide units-of-measure information for existing
code, even in part. We have noted however that there are often
many common patterns and clues about the intended units-
of-measure contained within variable names, comments, and
surrounding code context. In this work-in-progress paper, we
describe how we are adapting our approach, leveraging machine-
learning techniques to reconstruct units-of-measure information
automatically thus saving programmer effort and increasing the
likelihood of adoption.

Index Terms—units-of-measure, verification, machine learning

I. INTRODUCTION

Scientific computing and computational models are playing an
increasingly important role in research, industry, and policy.
However, such programs are just as error prone as other
kinds of software and their reliance on complex numerical
routines makes testing difficult. Very simple errors, such as a
flipped minus sign, can have significant impact, e.g. leading to
retractions from premier journals [1]. Lightweight verification
techniques have the potential to help in this situation through
tools that have a low specification burden [2]. Since scientific
models usually handle numerical quantities with physical
meaning, a helpful lightweight technique is to statically verify
the consistency of units-of-measure in computations. Units-of-
measure mistakes have famously led to high-stakes disasters,
such as the NASA Mars Climate Orbiter disappearing during
orbital insertion. An investigation pinned the blame on a
units-of-measure conflict, with ground-based software sending
numbers in Imperial units instead of metric units, dropping the
probe into the atmosphere of Mars [3].

Checking the consistency of dimensions, or their refinement
as units-of-measure, is a method long employed by scientists
working with pen and paper [4]. Informal discussion with
scientists and examination of scientific program code has
shown that dimensionality and units-of-measure reasoning in
code does take place, but usually only by hand [5]. Formal
dimensions/units checking has not been widely adopted in
scientific programming despite the familiarity of the technique
and a multitude of proposed systems for automated verifica-

tion [6, 7, 8, 9, 10]. One potential explanation for this is the
burden of applying units annotations to existing codebases.

In this work-in-progress paper, we describe how we are
exploring the idea of using machine learning techniques to
automatically infer units-of-measure annotations. We give
examples from existing open-source models demonstrating
potential sources of information and we identify challenges
arising from the shortage of labelled training data and the
importance of a good user experience.

a) Static analysis for units-of-measure: CamFort is an
open-source Fortran analysis and verification tool [11] that
provides units-of-measure inference and checking as one of its
core features. To do this it generates and solves constraints de-
rived from program variable relationships. Typically, the high
level of interdependence between variables means that units-
of-measure can be inferred for most variables from a relatively
small set of programmer-provided annotations. In one study of
real-world programs [12], approximately 80% of annotations
could be automatically inferred if given a ‘critical’ subset of
manual annotations. CamFort also supports polymorphic units-
of-measure annotations: functions that operate generically in
relation to units can be used with any units as input, provided
the usage is consistent with the rest of the code.

b) Machine learning for code: Machine learning is in-
creasingly applied to source code [13] with the goal of driving
new software engineering tools and program analyses. The
core enabler behind this is the observation that the vast
majority of source code is more than mere instructions for
a computer, it is also meant to be text that is read by the
human beings who maintain the code. For example, identifier
names and code comments are a rich source of information
to software engineers about the implemented functionality,
but meaningless to the compiler and most software analysis
programs.

II. ANNOTATING EXISTING CODE-BASES

As an example of CamFort’s approach, Listing 1 shows the
elementary equation of ballistics transcribed into Fortran with
units-of-measure annotations as comments given explicitly
before some of the variable’s typing declarations. Units are
expressed in terms of unit names (e.g., metre, sec) com-
bined by multiplication, division, and scalar exponentiation.

CamFort provides an inference mode which attempts to
infer suitable annotations for variables in a program. We can
also request that CamFort automatically inserts the inferred



real, parameter :: x0 = 0
!= unit metre / sec :: v0
real, parameter :: v0 = 20
!= unit metre / sec**2 :: a
real, parameter :: a = -9.8
!= unit metre :: x
real :: x
real :: t
x = 0.5 * a * t * t + v0 * t + x0

Listing 1: Example Fortran code with CamFort units-of-
measure annotations

annotations into the code at the relevant positions, to save
effort. In this case, the following missing specifications are
inferred for Listing 1:

unit metre :: x0
unit sec :: t

A. Inferring units-of-measure in Fortran with ML

By combining existing static analyses for inferring units-of-
measure with machine learning methods, we seek to fuse
ambiguous, yet useful, information from identifier names and
comments with the constraints generated by the units inference
system and thus mostly automate the annotation process.

a) Characteristics of the inference domain: The above
example (Listing 1) demonstrates the style of specifications
that are generated, where units-of-measure terms are consid-
ered a commutative group over a set of unit names.

The ‘skeleton’ of a units specification for a variable can
usually be automatically inferred from its usage constraints.
For example, if Listing 1 had no user annotations, then our
system would look at the relationships in the code and would
infer, for example, that variable a must have units that look
like α/β2 for some units α and β. This provides a skeleton
(a partial annotation) that can be completed by substituting
actual units (such as metre and sec respectively) into the
placeholders labelled α and β, and may provide a useful
starting point for more sophisticated analysis.

b) Information sources: Beyond the usual constraints
generated by our inference, there are many additional sources
of information that can allow us to probabilistically reason
about the units-of-measure, especially in scientific code:
• Identifier names, such as variable and function names,

can often be very indicative about the values they con-
tain. For example, a variable named distance probably
contains distance-related values. Or, as seen in Listing 2,
a variable named TEMP is possibly temperature, but in
other cases the name simply means ‘temporary’ variable.
Notably, distance would imply only the dimensionality
of the variable (a length) rather than its units-of-measure.
However, knowing the dimensionality restricts possibilities
for the unit. Machine learning techniques should easily
learn the categorisation of units-of-measure based on their
dimensionality, given appropriate training data.

• Scientific code is often annotated with comments that
helpfully indicate relevant information with regards to the

! Viscosity [Pa s] of air as a function of
temp (K).↪→

! Sutherland eqn. (ref. pp 25 in Hinds)
VISC = 1.458d-6 * (TEMP)**(1.5d0) / ( TEMP +

110.4d0 )↪→

Listing 2: Example Fortran statement from the GEOS-Chem
project: geos-chem.org.

REAL BTEMP ! in degK
REAL BPRESS ! in Pa
REAL VSP ! mean molecular speed (m/s)
REAL DG ! gas-phase moleular diffusion

! coefficient (m2/s)

Listing 3: Example Fortran variable declarations extracted
from the WRF project: github.com/wrf-model/WRF.

TempK = TempC + 273.15
RT = RGasConstant * TempK

Listing 4: Example code from the SHYFEM model:
github.com/SHYFEM-model/shyfem.

quantities and computations used, such as in Listings 2 and
3. However, such comments are free-text and cannot be
canonically parsed. By employing machine learning meth-
ods that have been used in Natural Language Processing,
we may be able to gain useful hints about the units-of-
measure of the annotated code.

• Usage patterns of variables, such as interaction with con-
stants, provide further hints towards inferring units-of-
measure. For example, adding the constant 273.15 prob-
ably indicates a conversion between Celsius and Kelvin
(Listing 4). Such constants are plentiful in scientific code.

• Execution-time instrumentation of code might additionally
provide useful probabilistic hints. For example, a variable
of Earth-weather simulation representing temperature in
Celsius will fall within a fairly limited range of values.

B. Challenges and opportunities

One important issue is that only small amounts of labelled-data
are available for training. This requires us to find data-efficient
methods that will allow us to learn with the minimal amount
of training data. Such methods are actively being explored in
machine learning and include domain adaptation, active, semi-
supervised and unsupervised learning.

One way to mitigate a shortage of labelled data could be to
provide to an inference algorithm a knowledge base of facts
about the units-of-measure for common constants and scaling
factors, e.g., Avogadro’s constant. Knowledge of common
scaling factors (e.g., 1000 has the unit m/km) might also be
suitably generalised to capture schemas of naming conventions
(e.g. 1000 has units u/ku for any unit names u).

Self-supervised or unsupervised techniques can learn salient
features about code elements and assist units inference meth-
ods, without annotated data. Inspired by pre-trained repre-
sentation learning methods in NLP, such as BERT [14] and



ELMo [15], methods used for learning distributed vector
representations (embeddings) can be repurposed for variable
naming [16, 17]. These methods take advantage of the fact that
variables that appear within similar contexts often have similar
names, roles and functions within a program. Such methods
have been shown to learn semantically rich representations
and may be useful for other downstream tasks, including unit
inference.

Of course, fully unsupervised methods alone cannot solve
the units inference problem. Pre-trained representations how-
ever provide a starting point for semi-supervised, active learn-
ing and domain adaptation methods. Active learning aims
to reduce the annotation burden by interacting with humans,
minimising the number of manual annotations needed while
maximising the information received per annotation. Simulta-
neously, domain adaptation methods might allow us to transfer
learned information across programs of different domains,
further reducing the necessary annotation effort. For example,
despite the differences between a fluid dynamics simulator for
wind turbines and a meteorological forecasting program, many
physical quantities and concepts appear in both.

At the same time, contrary to many standard machine
learning scenarios, inferring units-of-measure also presents a
unique opportunity: the formal structure of source code can
inform the learning process rendering it more data-efficient
compared to other, less structured tasks. For example, an
active learning approach might take advantage of the minimal
set of needed unit annotations [5] to further improve the
efficiency of the learning process. Unsupervised methods, such
as RefiNym [18], have shown some evidence towards the
importance of a program’s structure. For example, RefiNym
qualitatively shows that static dataflow analysis can help an
unsupervised method to nominally refine numeric variables
based on the physical quantities they represent; JSNICE [19]
can exploit JavaScript program structure to predict variable
types using a special type of factor graph. Based on those
ideas, one opportunity is to combine hard constraints derived
by static analysis with soft, probabilistic information within
factor graphs and other structured prediction methods, taking
advantage of all available information sources for units-of-
measure inference.

Despite these promises, the shape and form of our data
introduces a challenging setting for existing machine learning
methods. For example, despite the prevalence of polymor-
phism in programming languages, we are not aware of any ma-
chine learning methods that can learn such a concept. Similar
concepts such as hyponym and hypernym representations are
only now starting to be tackled by machine learning methods
in Natural Language Processing.

The final set of challenges lie with the user experience. The
user interface with machine learning-generated suggestions
must be convenient and simple. Although annotations can
be checked for consistency, we do not expect that machine
learning methods will always be able to decipher the intended
units-of-measure. Instead, the uncertainty and rationale of the
(probabilistic) selections needs to be accurately communicated

to the user who will make the final decision about the correct
annotations for each case; an interactive approach is likely.

III. RELATED WORK

Units-of-measure inference can be considered a form of
type inference. Interestingly, various authors have explored
the application of machine learning to type inference. JS-
NICE [19] and DEEPTYPER [20] probabilistically infer types
of JavaScript code through variable usage patterns and variable
names. However, these methods can only predict a relatively
small set of predefined types, often excluding user-defined
types or other rarely used types and rely on relatively large
supervised corpora of type-annotated code.

Units-of-measure annotations have been well-explored as an
extension to Hindley-Milner-style type systems [8]. The most
mainstream implementation is in the F# language [21]. Units
of measure may be declared or aliased using a special syntax:
[<Measure>] type cm

Types and literal values are annotated directly, e.g.:
let cm2inch(x:float<cm>) = x / 2.54<cm/inch>

The types are stratified: the float type cannot be unified
with a units-annotated float<u> type, only with float<1>.
This makes transitioning existing code-bases difficult because
adding units annotations to a function means that you have to
annotate all of its call-sites as well. Similarly, a type-checker
plugin for Haskell provides units-of-measure checking, reusing
Haskell’s type inference algorithm with a custom solver [22].

Several other libraries leverage their host’s advanced type
system to provide statically-checked units-of-measure. For
example, Squants provides units-of-measure for Scala with
a hierarchy of dimensions with associated units, conversion
and static checking (see squants.com). C++ has Boost::Units
(see boost.org) and JScience is a scientific programming
package for Java that includes a units-of-measure library
(see jscience.org). All of these offer statically-checked units
integrated with the host language. However, this comes at the
price of inference, which is not possible since the hosts’ type
systems cannot reason over commutative groups in the same
way as F# or CamFort.

IV. CONCLUSION

Units-of-measure errors in software can be costly, e.g., under-
mining the validity of conclusions drawn from scientific mod-
els, or leading to catastrophic outcomes in control software.
Formally verifying units-of-measure is therefore an attractive
goal. Furthermore, verifying units statically is appealing be-
cause it imposes no runtime cost. However, adoption remains
low despite the range of published approaches.

Tools like CamFort ease the burden of adding units-of-
measure to existing code by providing a system of units
inference. However, our experience is that the amount of anno-
tation required is still perceived by developers as a significant
overhead. Thus, as described here, our aim is to leverage
techniques from machine learning to reduce this burden,
allowing concrete unit annotations to automatically generated.
We presented examples from existing open-source models that



show potential sources of information and explored some of
the novel challenges that might arise.

We are currently working with scientists adding units-of-
measure annotations manually to existing code but the shortage
of labelled data remains a challenge. We are interested in
exploring other ideas to address this.

V. ACKNOWLEDGEMENTS

This work has been supported by Grant EP/M026124/1 from
the Engineering and Physical Sciences Research Council.

REFERENCES

[1] Z. Merali, “Computational science: error, why scientific
programming does not compute,” Nature, no. 467, Octo-
ber 2010.

[2] D. Orchard and A. Rice, “A computational science
agenda for programming language research,” Procedia
Computer Science, vol. 29, pp. 713 – 727, 2014, Inter-
national Conference on Computational Science.

[3] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A.
Dukeman, P. Norvig, L. S. LaPiana, P. J. Rutledge,
D. Folta, and R. Sackheim, “Mars Climate Orbiter
Mishap Investigation Board phase I report,” NASA, Tech.
Rep., 1999.

[4] E. O. Macagno, “Historico-critical review of dimensional
analysis,” Journal of the Franklin Institute, vol. 292,
no. 6, pp. 391–402, 1971.

[5] D. Orchard, A. Rice, and O. Oshmyan, “Evolving Fortran
types with inferred units-of-measure,” Journal of Com-
putational Science, vol. 9, no. Supplement C, pp. 156 –
162, 2015, computational Science at the Gates of Nature.

[6] J.-P. Ore, C. Detweiler, and S. Elbaum, “Lightweight
detection of physical unit inconsistencies without pro-
gram annotations,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2017. New York, NY, USA:
ACM, 2017, pp. 341–351.

[7] L. Jiang and Z. Su, “Osprey: a practical type system for
validating dimensional unit correctness of C programs,”
in Proceedings of the 28th International Conference on
Software Engineering. ACM, 2006, pp. 262–271.

[8] A. J. Kennedy, “Programming languages and dimen-
sions,” University of Cambridge, Computer Laboratory,
Tech. Rep., 1996.

[9] W. Snyder, “ISO/IEC JTC1/SC22/WG5 N1969:
Units of measure for numerical quantities,”
International Organization for Standardization, Tech.
Rep., 2013. [Online]. Available: http://wg5-fortran.org/
N1951-N2000/N1969.pdf

[10] M. Hills, F. Chen, and G. Roşu, “A rewriting logic
approach to static checking of units of measurement
in C,” in Ninth International Workshop on Rule-Based
Programming. Elsevier, 2008, pp. 51–67.

[11] D. Orchard, M. Danish, M. Contrastin, and A. Rice,
“CamFort,” http://camfort.github.io/, 2019, accessed:
2019-01-23.

[12] D. A. Orchard, A. C. Rice, and O. Oshmyan, “Evolving
Fortran types with inferred units-of-measure,” J. Comput.
Science, vol. 9, pp. 156–162, 2015.

[13] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A
survey of machine learning for big code and naturalness,”
ACM Computing Surveys (CSUR), vol. 51, no. 4, p. 81,
2018.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[15] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word
representations,” in Proceedings of Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), vol. 1, 2018, pp. 2227–2237.

[16] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton,
“Suggesting accurate method and class names,” in Pro-
ceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015, pp. 38–49.

[17] R. Bavishi, M. Pradel, and K. Sen, “Context2Name:
A deep learning-based approach to infer natural vari-
able names from usage contexts,” arXiv preprint
arXiv:1809.05193, 2018.

[18] S. K. Dash, M. Allamanis, and E. T. Barr, “RefiNym:
using names to refine types,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2018, pp. 107–117.

[19] V. Raychev, M. Vechev, and A. Krause, “Predicting
program properties from big code,” in ACM SIGPLAN
Notices, vol. 50, no. 1. ACM, 2015, pp. 111–124.

[20] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis,
“Deep learning type inference,” in Proceedings of the
2018 26th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2018, pp. 152–162.

[21] A. Kennedy, Types for units-of-measure: theory and
practice. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 268–305.

[22] A. Gundry, “A typechecker plugin for units of measure:
domain-specific constraint solving in GHC Haskell,” in
ACM SIGPLAN Notices, vol. 50, no. 12. ACM, 2015,
pp. 11–22.


