
Predicting the Performance of Virtual Machine
Migration

Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore and Andy Hopper
University of Cambridge Computer Laboratory
firstname.lastname@cl.cam.ac.uk

Abstract—With the ability to move virtual machines between
physical hosts, live migration is a core feature of virtualisation.
However for migration to be useful, deployable feature on a
large (datacentre) scale, we need to predict migration times with
accuracy. In this paper, we characterise the parameters affecting
live migration with particular emphasis on the Xen virtualisation
platform. We discuss the relationships between the important
parameters that affect migration and highlight how migration
performance can vary considerably depending on workload. We
further provide 2 simulation models that are able to predict
migration times to within 90% accuracy for both synthetic and
real-world benchmarks.

I. INTRODUCTION

Virtualisation has become a core facility in modern com-
puting installations. It provides opportunities for improved
efficiency by increasing hardware utilisation and application
isolation [1] as well as simplifying resource allocation and
management. One key feature that makes virtualisation attrac-
tive is that of live migration.

Live migration platforms (e.g. XenMotion [2] and VMo-
tion [3]) allow administrators to move running virtual ma-
chines (VMs) seamlessly between physical hosts. This is of
particular benefit for service providers hosting high availability
applications. The level of service to which a service provider
commits when hosting and running an application is described
by a Service Level Agreement (SLA) and is typically couched
in terms of application availability. Policies such as 99.999%
availability (common in the telecommunication industry) per-
mit only 5 minutes of downtime a year. Routine activities
such as restarting a machine for hardware maintenance are ex-
tremely difficult under such a regime and so service providers
invest considerable resources in high-availability fault-tolerant
systems. Live migration mitigates this problem by allowing
administrators to move VMs with little interruption. This per-
mits regular maintenance of the physical hardware; supports
dynamic reconfiguration enabling cluster compaction in times
of low demand; and shifts computing load to manage cooling
hotspots within a datacentre [4].

However, short interruptions of service are still unavoidable
during live migration due to the overheads of moving the
running VM. Previous studies have demonstrated that this
can vary considerably between applications due to different
memory usage patterns, ranging from 60 milliseconds when
migrating a Quake game server [5] to 3 seconds in the
case of High-Performance Computing benchmarks [6]. This
variation means that predicting the duration of any interruption

is necessary on a per-workload basis in order to effectively
plan resource allocation and maintenance schedules.

In this paper we examine migration times in detail and
propose models which can be used to make workload specific
predictions of service interruptions. In Section II we discuss
live migration approaches with detailed emphasis on the Xen
migration architecture. In Section III we investigate migration
performance and confirm that the page dirty rate and link speed
are the significant determining factors. We quantitatively show
how particular combinations of these factors can markedly ex-
tend migration time and VM unavailability. Finally, in Section
IV we utilise our measurements to develop and validate 2
simulation models which are useful for predicting the total
migration and service interruption times when migrating any
workload.

II. LIVE MIGRATION OF VMS

Live migration is a technology with which an entire running
VM is moved from one physical machine to another. Migration
at the level of an entire VM means that active memory
and execution state are transferred from the source to the
destination. This allows seamless movement of online services
without requiring clients to reconnect. As migration designs
to-date require universally accessible network attached storage
(NAS), migrations are reduced to copying in-memory state and
CPU registers. On migration completion, virtual I/O devices
are disconnected form the source and re-connected on the
destination physical host.

There are several techniques for live migration that trade-
off two important parameters—total migration time and down-
time. Total migration time refers to the total time required to
move the VM between physical hosts while downtime is the
portion of that time when the VM is not running.

Pure stop-and-copy [7], [8], [9] designs halt the original VM
and copy its entire memory to the destination. This technique
minimises total migration time but suffers from high downtime
as the VM is suspended during the entire transfer. Pure on-
demand [10] migration on the other hand operates by stopping
the VM to copy only essential kernel data to the destination.
The remainder of the VM address space is transferred when it
is accessed at the destination. While this technique has a very
short downtime, it suffers from high total migration time.

It has previously been established that both stop-and-copy
and on-demand migrations have poor performance [5]. The
former may lead to significant service disruption especially



if the VM is running highly used applications while the latter
incurs a longer total migration time and degraded performance
during the synchronisation of on-demand pages between hosts.

A. Pre-copy Migration

Pre-copy migration tries to tackle problems associated with
earlier designs by combining a bounded iterative push step
with a final and typically very short stop-and-copy phase [5].

The core idea of this design is that of iterative convergence.
The design involves iterating through multiple rounds of
copying in which the VM memory pages that have been
modified since the previous copy are resent to the destination
on the assumption that at some point the number of modified
pages will be small enough to halt the VM temporarily, copy
the (small number of) remaining pages across, and restart it
on the destination host. Such a design minimises both total
migration time and downtime.

Pre-copy migration involves 6 stages [5], namely:
1) Initialisation: a target is pre-selected for future migra-

tion.
2) Reservation: resources at the destination host are re-

served.
3) Iterative pre-copy: pages modified during the previous

iteration are transferred to the destination. The entire
RAM is sent in the first iteration.

4) Stop-and-copy: the VM is halted for a final transfer
round.

5) Commitment: the destination host indicates that it has
received successfully a consistent copy of the VM.

6) Activation: resources are re-attached to the VM on the
destination host.

Unless there are stop conditions, the iterative pre-copy stage
may continue indefinitely. Thus, the definition of stop condi-
tions is critical in terminating this stage in a timely manner.
These conditions are usually highly dependent on the design
of both the hypervisor and the live migration sub-system but
are generally defined to minimise link usage and the amount
of data copied between physical hosts while minimising VM
downtime. However, the existence of these stop conditions has
a significant effect on migration performance and may cause
non-linear trends in the total migration time and downtime
experienced by VMs (as will be shown in Section III).

B. Defining Migration Performance

Migration performance may be evaluated by measuring total
migration time and total downtime. The former is the period
when state on both machines is synchronised, which may
affect reliability while the latter is the duration in which the
VM is suspended thus seen by clients as service outage.

Using the pre-copy migration model, total migration time
may be defined as the sum of the time spent on all 6
migration stages (Equation 1) from initialisation at the source
host through to activation at the destination. Total downtime,
however, is the time required for the final 3 stages to complete
(Equation 2).

While it is expected that the iterative pre-copy stage will
dominate total migration time, our measurements found that
for certain classes of applications (specifically those that do not
have a high memory page modification rate) the initialisation,
reservation, commitment and activation stages may add a
significant overhead to total migration time and downtime.
We classify the initialisation and reservation stages together as
pre-migration overhead while the commitment and activation
stages compose post-migration overhead.

TotalMigrationT ime = Initialisation + Reservation︸ ︷︷ ︸
Pre-migrationOverhead

+
∑

i

Pre-copyi + Stop-and-copy

+ Commitment + Activation︸ ︷︷ ︸
Post-migrationOverhead

(1)

TotalDowntime =Stop-and-copy

+ Commitment + Activation︸ ︷︷ ︸
Post-migrationOverhead

(2)

C. Migration Bounds

Given the stop conditions, it is possible to work out the
upper and lower migration performance bounds for a specific
migration algorithm. We will use a real-world case to charac-
terise these boundaries.

While there exist a range of live migration platforms, for the
remainder of this paper we will base our analysis on the Xen
migration platform. Xen is already being used as the basis
for large scale cloud deployments [11] and thus this work
would immediately benefit these deployments. Moreover, Xen
is open-source allowing us to quickly and efficiently determine
the migration sub-system design and implementation. Note
however that our measurement techniques, methodology, and
prediction models design basis are applicable to any virtualisa-
tion platform that employs the pre-copy migration mechanism.

The stop conditions that are used in Xen migration algo-
rithm are defined as follows:

1) Less than 50 pages were dirtied during the last pre-copy
iteration.

2) 29 pre-copy iterations have been carried out.
3) More than 3 times the total amount of RAM allocated

to the VM has been copied to the destination host.
The first condition guarantees a short downtime as few

pages are to be transferred. On the other hand, the other 2
conditions just force migration into the stop-and-copy stage
which might still have many modified pages to be copied
across resulting in large downtime.

1) Bounding Total Migration Time (Equation 3): Consider
the case of an idle VM running no applications. In this
case the iterative pre-copy stage will terminate after the first
iteration as there is no memory difference. Consequently, the
migration sub-system need only to send the entire RAM in
the first round. The total migration lower bound is thus the



time required to send the entire RAM coupled with pre- and
post-migration overheads.

On the other hand, consider the case where the entire
memory pages are being modified as fast as link speed. In
this scenario, the iterative pre-copy stage will be forced to
terminate after copying more than 3 times the total amount
of RAM allocated to the VM. Migration then re-sends the
entire modified RAM during the stop-and-copy stage. The total
migration upper bound is thus defined as the time required to
send 5 times the VM size less 1 page1 plus pre- and post-
migration overheads.

Overheads +
V MSize

LinkSpeed
≤ TotalMigrationT ime ≤

Overheads +
5 ∗ V MSize− 1 ∗ page

LinkSpeed
(3)

2) Bounding Total Downtime (Equation 4): Similarly, the
total downtime lower bound is defined as the time required
for the post-migration overhead, assuming that the final stop-
and-copy stage does not transfer any pages. This occurs either
when the VM is idle or the link speed is fast enough to copy
all dirtied pages in the pre-copy stage. On the other hand, the
total downtime upper bound is defined as the time required to
copy the entire RAM in the stop-and-copy stage coupled with
the post-migration overhead.

Post-migrationOverhead ≤ TotalDowntime ≤

Post-migrationOverhead +
V MSize

LinkSpeed
(4)

3) Difference in Bounds: Modelling bounds is useful as it
enables us to reason about migration times provided that we
know the link speed and VM memory size. These bounds are
the limits in which the total migration time and total downtime
are guaranteed to lie. Given a 1,024 MB VM and 1 Gbps
migration link, for example, the total migration time has a
lower bound of 13 and upper bound of 50 seconds respectively.
Similarly, the downtime has a lower bound of .314 and upper
bound of 9.497 seconds respectively.

Table I illustrates the migration bounds for some common
link speeds. While the downtime lower limit is fixed (as it is
dependent purely on post-migration overhead) all other bounds
vary in accordance to link speed due to their correlation with
the VM memory size. As the table indicates, the bounds vary
significantly. For bigger VM memory sizes (which is common
in current installations [12]) we have even larger differences.

Thus, using bounds is at best an imprecise exercise and does
not allow for accurate prediction of migration times. Building
better predictions requires understanding the relationship be-
tween factors that impact migration performance. We address
this in the next section.

1

n−1∑
i=0

Pre-copyi︸ ︷︷ ︸
3V MSize−1page

+ Pre-copyn︸ ︷︷ ︸
1V MSize

+ Stop-and-copy︸ ︷︷ ︸
1V MSize

TABLE I
MIGRATION BOUNDS. MT: TOTAL MIGRATION TIME (SECONDS). DT:

TOTAL DOWNTIME (MILLISECONDS). LB: LOWER BOUND. UB: UPPER
BOUND. VM SIZE= 1,024 MB.

Speed MTLB MTUB DTLB DTUB

100 Mbps 95.3 s 459.1 s 314 ms 91,494.5 ms
1 Gbps 13.3 s 49.9 s 314 ms 9,497.8 ms

10 Gbps 5.3 s 10.1 s 314 ms 1,518.7 ms

III. PARAMETERS AFFECTING MIGRATION

There are several factors that we need to study as a pre-
requisite for accurate migration modelling. In this section,
we explore these factors and their impact on total migration
time and downtime. Moreover, stop conditions that may force
migration to reach its final stages are generally what governs
migration performance. Obviously, this is implementation spe-
cific which is exemplified by but not limited to Xen support
for live migration.

Migration link bandwidth is perhaps the most influen-
tial parameter on migration performance. Link capacity is
inversely proportional to total migration time and downtime.
Higher speed links allow faster transfers and thus require less
time to complete. Figure 1 illustrates migration performance
for a 1,024 MB VM running a micro-benchmark that writes
to memory pages with rates up to 300,000 pages/second on
100 Mbps, 1 Gbps, and 10 Gbps links. It represents the impact
of each link speed on total migration time and downtime.
As link bandwidth increases, the point in the curve when
migration performance starts to degrade rapidly shifts to the
right roughly with the same ratio.

Page dirty rate is the rate at which memory pages in the
VM are modified which, in turn, directly affects the number of
pages that are transferred in each pre-copy iteration. Higher
page dirty rates result in more data being sent per iteration
which leads to longer total migration time. Furthermore, higher
page dirty rates results in longer VM downtime as more pages
need to be sent in the final transfer round in which the VM is
suspended.

Figure 1 shows the effect of varying the page dirty rate
on total migration time and downtime for each link speed.
The relationship between page the dirty rate and migration
performance is not linear because of the stop conditions
defined in the algorithm. If the page dirty rate is below
link capacity, the migration sub-system is able to transfer
all modified pages in a timely fashion, resulting in a low
total migration time and downtime. On the other hand, if
the page dirty rate starts approaching link capacity, migration
performance degrades significantly.

Total downtime at low page dirty rates is virtually constant
and approximately equal to the lower bound (Equation 4). This
is because the link has enough capacity to transfer dirty pages
in successive iterations leading to a very short stop-and-copy
stage. When the page dirty rate increases to the point that 29
iterations are not sufficient to ensure a short final copy round
or when more than 3x the VM size have been transferred,
migration is forced to enter its final stage with a large number



(a) 100 Mbps Total Downtime (b) 100 Mbps Total Migration Time

(c) 1 Gbps Total Downtime (d) 1 Gbps Total Migration Time

(e) 10 Gbps Total Downtime (f) 10 Gbps Total Migration Time

Fig. 1. Effect of Link Bandwidth on Migration Performance. VM Size= 1,024 MB. Confidence intervals are omitted because of insufficient vertical resolution.

of dirty pages yet to be sent. Consequently, total downtime
starts to increase in proportion to the increase in the number
of modified pages that need to be transferred in the stop-and-
copy stage. Total downtime further increases until the defined
upper bound in which it has to send the entire VM memory.

Total migration time also increases with an increasing page
dirty rate. This is attributable to the fact that more modified
pages have to be sent in each pre-copy round. Moreover, the
migration sub-system has to go through more iterations with
the hope to have a short final stop-and-copy round. For page
dirty rates near link speed, total migration time approaches its
upper bound (Equation 3) as migration stops when 3x VM
size has been transferred. Then, it starts to fall back towards
its lower bound.

For extremely high page dirty rates (compared to link speed),

migration is forced to reach its final transfer stage after 29
iterations having sent virtually no pages.2 It then has to transfer
the entire RAM in the final iteration. This is exemplified
clearly for the 100 Mbps link in Figure 1(b), in which the
total migration time drops back to its lower bound (almost all
dirty pages are skipped in every iteration except the final one)
while having a total downtime (Figure 1(a)) at its upper bound
(as the entire RAM has to be transferred in the stop-and-copy
stage).

The first pre-copy iteration tries to copy across the entire
VM allocated memory. The duration of this first iteration
is thus directly proportional to the VM memory size and

2If a memory page is modified more than once in the same iteration, it is
skipped



subsequently impacts total migration time. On average, total
migration time increases linearly with VM size. On the other
hand, the total downtime for low page dirty rates is almost the
same regardless of the VM size as the migration sub-system
succeeds in copying all dirtied pages between successive
iterations resulting in a short stop-and-copy stage. When the
link is unable to keep up with the page dirty rate, larger VMs
suffer longer downtime (linearly proportional to the VM size)
as there are more distinct physical pages that require copying
in the stop-and-copy stage.

Pre- and post-migration overheads refer to operations
that are not part of the actual transfer process. These are
operations related to initialising a container on the destination
host, mirroring block devices, maintaining free resources,
reattaching device drivers to the new VM, and advertising
moved IP addresses. As these overheads are static, they are
significant especially with higher link speeds. For instance,
pre-migration setup constitutes around 77% of total migration
time on a 10 Gbps link for a 512 MB idle VM. More
importantly, post-migration overhead is an order of magnitude
larger than the time required for the stop-and-copy stage.

To conclude this section, there are several parameters
affecting migration performance. These parameters may be
classified as having either a static or dynamic effect on
migration performance. Parameters having static effects are
considered as unavoidable migration overheads. On the other
hand, parameters having dynamic effects on migration affect
only the transfer process. Dynamic parameters are typically
related to the VM specification and applications hosted inside
it.

We show that the page dirty rate and link speed are the
major factors influencing migration times. We also show how
particular combinations of these factors can extend expected
total migration time and downtime. Finally, we observe that
the pre- and post-migration overheads become significant
compared to the iterative pre-copy and stop-and-copy stages,
especially for VMs that have low page dirty rates and are being
migrated over high speed links.

IV. PREDICTING MIGRATION

We have argued in Section II-C that the analytical bounds
on migration are unacceptably wide. More accurate models are
needed to help datacentre administrators intelligently provision
and control their virtualised infrastructure. In Section III, we
studied migration behaviour and the parameters impacting its
performance. We now use these parameters to create accurate
simulation models of the migration process.

We have implemented 2 simulation models, termed AVG
(average page dirty rate) and HIST (History Based Page Dirty
Rate), that may be used to predict pre-copy migration per-
formance given all parameters affecting migration behaviour;
namely the link speed, page dirty rate, VM memory size
and migration overheads. The AVG model is based on pure
simulation of the actual migration logic assuming a constant
or average page dirty rate. It is useful when the page dirty rate
of a given VM is fairly stable. On the other hand, the HIST

Algorithm 1 The AVG Simulation Model
#These values are given
LINK SP EED
P AGE DIRT Y RAT E
P RE MIGRAT ION OV ERHEAD
P OST MIGRAT ION OV ERHEAD
V M SIZE
#Start simulation
p2m size = V M SIZE

P AGE SIZE
MAX SENT = 50
MAX IT ERAT IONS = 29
MAX F ACT OR = 3
MAX BAT CH SIZE = 1, 024
to send ←ALL PAGES
total sent = 0
iteration = 0
loop

iteration = iteration + 1
N = 0
while N ≤ p2m size do

sent this iteration = 0
skip this iteration = 0
if NOT last iteration then

to skip =sim peek()
end if
batch = 0
for (batch ≤ MAX BAT CH SIZE) AND (N ≤ p2m size)) do

if (NOT last iteration) AND
(N ∈ to send) AND
(N ∈ to skip) then

skip this iteration++
end if
if NOT ((N ∈ to send AND N /∈ to skip) OR (N ∈ to send AND
last iteration)) then

continue
end if
batch set ← N
batch++
N++

end for
migration time = migration time + batch set

LINK SP EED
if last iteration then

downtime time = downtime time + batch set
LINK SP EED

end if
total sent = total sent + batch set
sent this iteration = batch set

end while
if last iteration then

exit()
end if
if (iteration ≥ MAX IT ERAT IONS) OR (total sent > p2m size ∗
MAX F ACT OR) OR (sent this iteration + skip this iteration <
MAX SENT ) then

last iteration =True
end if
to send =sim clean()

end loop

total migration time =migration time

+P RE MIGRAT ION OV ERHEAD

+P OST MIGRAT ION OV ERHEAD

total downtime time =downtime time

+P OST MIGRAT ION OV ERHEAD

model depends on a history log of page dirty rates that has
been measured beforehand for a given time frame. It is used
when the VM has a variable page dirty rate that cannot be
approximated as an average.

A. The AVG Simulation Model

The AVG simulation model assumes constant page dirty
rates for applications that are running inside the VM. For
certain workloads, it is sufficient to approximate the page
dirty rate using an average. In those cases, the AVG model
is useful in predicting total migration and downtime. Our
AVG model simulation requires four input parameters: the
link speed, average page dirty rate, VM memory size, and
migration overheads. The model is summarised in Algorithm
1.

Input parameters are easily obtained. The average page dirty
rate is analytically determinable or measured using platform
specific tools. The link speed is approximated using a standard
throughput measurement tool (e.g. Iperf [13]) while the VM
memory size is a known value. Finally, pre- and post-migration



overheads are determined by subtracting the time spent during
the actual transfer from the total time required to migrate an
idle VM.

The AVG (and the HIST) simulation model follow the
core functionality of migration in Xen that is coded in
xc_domain_save.c and xc_domain_restore.c files.
The 2 key functions that we simulate are sim_clean and
sim_peek. sim_clean returns the set of dirty pages and
resets the state to all clean. sim_peek returns the dirty
bitmap without resetting its state.

At each iteration in the iterative pre-copy stage, the simu-
lated dirty bitmap is read and cleaned. Pages with the dirty
bit set are candidates for transfer. We follow optimisations
done in Xen: (1) pages that have been re-dirtied in the same
iteration are skipped as they are likely to be transferred in the
next iteration and (2) transfers occur in batches of 1,024 pages
before the dirty bitmap is peeked again. Migration reaches the
final stop-and-copy stage if conditions which force migration
out of the iterative pre-copy stage are met. These conditions
are illustrated in Section II-C.

Simulated total migration time is effectively the number of
dirty pages (excluding re-dirtied pages in the same iteration)
that should have been sent during the whole migration process
divided by the available TCP bandwidth. We have also to
account for migration overheads as they contribute to the
migration time, especially for higher link speeds. On the other
hand, simulated total downtime is the time required for the set
of dirty pages that should have been sent in the stop-and-copy
migration stage in addition to the post-migration overhead.

B. The HIST Simulation Model

In the cases where the AVG model is impractical or inad-
equate (e.g. where the page dirty rate is a function of time)
we define the HIST simulation model. Our HIST model is a
specialisation of the AVG model and is defined to be used for
workloads that are approximately deterministic with similar
behaviour between runs (e.g. a MapReduce workload).

The key idea is based on the observation that for determin-
istic processes the set of dirtied pages at any point in time
will be approximately the same as for previous runs of the
same workload running in a similar environment. Hence, for
a migration initiated at time t, we are able to predict migration
times based on a previously collected log of pages dirtied at
time t + 1 · · · t + N . The HIST model is easily implemented
by adjusting the sim_clean and sim_peek functions in
Algorithm 1 to return the number of dirty pages at those points
in time from the historical log.

C. Test-bed

Figure 2 illustrates the infrastructure used in our experi-
ments. Citrix Xenserver 5.5.0 (Xen 3.3.1) is installed on 3
servers having each 2 Intel(R) Xeon(TM) E5506 2.13 GHZ
CPUs, 6 GB DDR3 RAM, integrated dual Gigabit Ethernet (1
Intel PRO/1000PT PCI Express Single Port Desktop Adapter),
and 1 PCI Express 8x slot. One of these servers is designated

Fig. 2. Infrastructure

as the pool master, while the others (Host A and B) are used
for live migration runs.

The storage area network is configured using an IBM es-
erver xSeries 336 having Intel(R) Xeon(TM) X5470 3.00 GHZ
CPU, 2 GB fully buffered DIMM modules, integrated dual
Gigabit Ethernet, and an Ultra320 SCSI controller. ISCSI
support is provided by the Linux target framework (tgt) [14]
installed on a Ubuntu server running the 2.6.27-7 kernel.

A number of client machines generate load for SPECweb
and SPECsfs while a desktop machine is used for automating
the experiments and analysing measurements. Three links
running on separate subnets using a dedicated Netgear Gigabit
switch provide management, storage and guest networking
functions respectively. Migration is carried out over dedicated
back-to-back connections between Host A and B.

D. Optimising Migration For 10 Gbps Links

We evaluate our prediction models by comparing simulation
results with measurements obtained through actual migration
runs executed over a pair of directly connected SolarFlare
10 Gbps network interconnects. However, our initial results
showed that the default Xen migration platform is incapable
of providing a migration throughput higher than 3.2 Gbps.

Profiling the migration sub-system highlighted a high over-
head associated with mapping the guest domain (DomU)
physical pages. The Xen migration sub-system carries out
migration by continually mapping and unmapping the physical
pages of the migrating DomU in the control domain (Dom0)
migration process. In doing this Dom0 is able to access and
send DomU page contents to the remote host.

The default Xen implementation maps and unmaps DomU
pages in 4 MB segments (for batch transfer). These operations
have a high temporal overhead due to the time required to
setup and tear down page table entries in the migration process
page table. As a result, Dom0 migration process spends a
significant amount of time in page table management and is
therefore unable to keep the link fully utilised.

We modified the Xen migration sub-system to eliminate this
bottleneck by changing the design so that Dom0 migration
process maps the entire guest VM physical address space at the
start of the migration. Although the overhead of mapping the
entire address space is in the order of hundreds of milliseconds
(as it is proportional to the VM size), this cost is amortised



over the length of the migration process. We ensure we are
able to map even the largest VMs by utilising a 64-bit Dom0.

Similarly, we observed that the per-packet overheads are
high enough that utilising a larger maximum transmission unit
(MTU) results in increased throughput. Thus, we modified
the Xen migration platform to use jumbo (9 KB) frames
when carrying out measurements over 10 Gbps links. As a
result of the modifications, migration throughput increased
to 7.12 Gbps, an enhancement of 122.5% over the original
implementation.

E. Evaluation of the Simulation Models

In this section we provide results that evaluate the accuracy
of both the AVG and HIST models on a bespoke page
modification micro-benchmark designed to stretch migration
performance, and industry-standard workloads. We use SPEC
CPU [15] for CPU bound workloads, SPECweb [16] for web-
server workloads, SPECsfs [17] for I/O intensive workloads,
and MapReduce tasks [18] for non-interactive workloads. All
migrations are carried out on 10 Gbps links utilised the
modifications outlined in Section IV-D.

1) Page Modification Micro-Benchmark: We required a
deterministic application to measure the behaviour of the mi-
gration sub-system. For this purpose, we developed a synthetic
userspace page modification micro-benchmark that writes to
memory pages at fixed rates. This program has a resolution
of 1 microsecond (determined by the gettimeofday sys-
tem call), enabling a maximum page modification rate of 1
million pages/second.

While gettimeofday offers a resolution of 1 microsec-
ond, implementation precisions varies. Therefore, we only use
rates an order of magnitude larger in our experiments. We
verified the accuracy of the benchmark by comparing the set
rate with the actual rate computed from the dirty bitmap log.

At a given modification rate the program sequentially and
circularly changes (writes to) the first byte of every memory
page. The valloc library call is employed to ensure allocated
memory is aligned to a page boundary.

We tested all the major parameters affecting migration
performance identified in Section III. We performed more
than 25,000 live migrations runs to evaluate and verify our 2
models. We have validated our prediction results with varying
page modification rates (up to 300,000 pages per second), 3
link speeds (100 Mbps, 1 Gbps, and 10 Gbps), and 2 VM
memory sizes (512 MB and 1,024 MB).

The AVG and HIST models are equally applicable to VMs
running our page modification micro-benchmark. Because the
program modifies memory pages at a fixed rate we can use
this value as input to the AVG model. On the other hand, we
are able to record page dirty bitmaps of the benchmark for
use in the HIST model as well.

Figure 3 compares actual measurements with our predic-
tions from the AVG and HIST models for different page
modification rates up to 300,000 pages/second of a 1,024 MB
VM migrated on 10 Gbps link. Points are averages of 15
measured data values while the solid line represents the

TABLE II
PREDICTION MEAN ERROR FOR DIFFERENT LINK SPEEDS AND VM

SIZES. MT: TOTAL MIGRATION TIME. DT: TOTAL DOWNTIME.

V MSize Speed Model MTerr DTerr

1,024 100 Mbps AVG 1.8% 7.5%
1,024 100 Mbps HIST 3.5% 8.0%
1,024 1 Gbps AVG 1.6% 9.3%
1,024 1 Gbps HIST 2.5% 7.4%
1,024 10 Gbps AVG 2.6% 3.3%
1,024 10 Gbps HIST 3.3% 6.2%

512 10 Gbps AVG 3.2% 7.1%
512 10 Gbps HIST 3.8% 4.9%

simulation mean. Figure 3 illustrates that The AVG and HIST
models closely follow the measured results. The AVG model
has mean errors as low as 2.6% and 3.3% while the HIST
model deviates from measured results by 3.3% and and 6.2%
for total migration and total downtime respectively (Table II).

With regards to link speed, we validated the AVG and HIST
model predictions with 100 Mbps, 1 Gbps, and 10 Gbps
connections. We define link speed as the application level
(migration) throughput or goodput, which is lower than the
available hardware bandwidth due to protocol, OS and vir-
tualisation overheads. We measure this obtainable goodput
beforehand for use as input into our simulation. Our two
models are accurate for all link speeds, as indicated by the low
mean errors between the predicted and actual results provided
in Table II.

So far we have shown that our models accurately predict
migration performance for a 1,024 MB VM. Changing VM
size to 512 MB, we verified the AVG and HIST models using
a 10 Gbps link with varying page dirty rates. The AVG model
has mean errors as low as 3.2% and 7.1% while the HIST
model differs from measured results by 3.8% and 4.9% for
total migration and total downtime respectively (as indicated
in Table II). Next, we examine the SPEC set of benchmarks.

2) SPEC CPU: We continued our evaluation by comparing
the simulation predictions against a set of industry-standard
workloads, specifically SPEC CPU, SPECweb and SPECsfs.

We begin by evaluating the CINT2000 (integer component
of SPEC CPU2000). This benchmark stresses a system’s
processor, memory sub-system and compiler. CINT2000 is
hosted inside a 1,024 MB guest VM that has been allocated 1
vCPU. It contains 12 applications written in C/C++. However,
we omit details about individual application and only report
average migration times for 15 entire runs of the benchmark.
We evaluate the models by comparing predicted migration
times with actual migration times (using the HIST model due
to the non-uniform page dirty rates). We instrument migration
to happen once during the run of each application.

3) SPECweb: Next, we evaluated a web workload, specif-
ically SPECweb99. This benchmark comprises a webserver
serving a complex mix of static and dynamic page (CGI
scripts) requests among other features. We configured a VM
to host the SPECweb server with 6 vCPUs and 1,024 MB
RAM in order to have enough computing resources to saturate
our client traffic links running at 100 Mbps. 3 separate client
machines generate a load of 100 simultaneous connections to



(a) The AVG Model. (b) The HIST Model.

Fig. 3. Evaluation for the AVG and HIST Models. Bandwidth= 10 Gbps. VM Size= 1,024 MB. MT: Total Migration Time. DT: Total Downtime. Confidence
intervals are omitted because of insufficient vertical resolution.

TABLE III
INDUSTRY-STANDARD WORKLOADS. CPU: SPEC CPU. WEB:

SPECWEB. SFS: SPECSFS. MR: MAPREDUCE TASKS. MT: TOTAL
MIGRATION TIME (IN SECONDS). DT: TOTAL DOWNTIME (IN

MILLISECONDS). BANDWIDTH= 10 GBPS. VM SIZE= 1,024 MB (FOR
CPU AND WEB) AND 4,096 MB (FOR SFS AND MR). A: ACTUAL

MEASUREMENT. P: THE HIST MODEL’S PREDICTION.

MTA MTP Err DTA DTP Err
CPU 5.8 s 5.7 s 2.4% 317.3 ms 314.1 ms 2.4%

WEB 7.5 s 7.4 s 2.0% 449.5 ms 420.4 ms 6.4%
SFS 14.8 s 14.9 s 1.5% 217.6 ms 217.7 ms 0.1%
MR 14.9 s 15.13 s 1.4% 348.9 ms 348.1 ms 0.2%

the webserver. We force a live migration every 2 minutes over
the duration of 15 runs of SPECweb. Each run is 20 minutes
long with an additional 5 seconds warmup time.

The page modification rates for SPEC CPU and SPECweb
have previously been reported as being around 50,000
and 12,000 pages/second respectively [5]. A 10 Gbps
migration link is capable of transferring approximately
250,000 pages/second. Due to the low page dirty rates the link
is able to adequately transfer all dirty pages in each iteration.

Consequently, migration times are relatively constant. Table
III shows the actual and modelled migration times for SPEC
CPU and SPECweb. The HIST model is accurate for predict-
ing migration performance as shown by the low mean error.
SPECweb incurs a slightly higher error for downtime predic-
tiondue to the additional load on the network sub-system. We
have noticed that this increased non-deterministically the time
required to suspend and/or resume the VM during the final
stages of migration.

4) SPECsfs: Next, we evaluate SPECsfs 3.0 (SFS97 R1).
This benchmark measures NFS (version 3) file server through-
put and response time for an increasing load of NFS operations
(lookup, read, write, getattr, readling, create,
remove, fsstat, setattr, readdirplus, access,
and commit) against the server over file sizes ranging from
1 KB to 1 MB.

The NFS server runs in a guest VM with 4,096 MB RAM
and 1 vCPU. We used 2 clients to generate an increasing load
on the server, starting from 100 to 1,000 operations/second.
Each run is 5 minutes long with an additional 5 seconds

warmup time. We force a live migration every 2 minutes over
the duration of the entire 10 runs.

The average measured total migration time and downtime
are 14.9 seconds and 348 milliseconds respectively. We also
tracked the total number of dirty pages for the benchmark run,
which is illustrated in Figure 4. As the load increases, the
dirty rate also increases. However, SPECsfs does not surpass
10,000 dirty pages/second, which is approximately 4% of link
capacity on a 10 Gbps network. Thus, load variation has
negligible effects on migration results.

As the page dirty rates for the workload are not constant,
we rely on the HIST model to simulate migration perfor-
mance for SPECsfs. Predicted total migration time and total
downtime differ from actual measurements by 1.5% and 0.1%
respectively (Table III), which shows excellent accuracy for
I/O bound workloads.

5) MapReduce Tasks: There is currently wide-spread in-
terests in the MapReduce paradigm for large-scale data pro-
cessing and analysis [19], [20]. This simple (but effective)
model consists of two functions: Map and Reduce. The Map
function reads, filters and/or transforms data from an input
file, and then outputs a set of intermediate records. These
intermediate records are typically split according to a hash
function into disjoint buckets. The Reduce function processes
or combines all intermediate records associated with the same
hash value, and then writes new records to an output file.
Programs written according to this model are automatically
executed in parallel on a large scale cluster. MapReduce is
used in web search, sorting, data mining, machine learning
and many other systems [21].

We evaluate MapReduce tasks that involve HTML doc-
ument processing [18]. The most popular open-source im-
plementation of the MapReduce framework is the Hadoop
system [22], which we use to run the tasks. We consider
live migration of one node in the cluster. This node is
configured to run both Map and Reduce functions. It has
4,096 MB RAM and 1 vCPU. We instrument live migration
every 2 minutes over the course of 3 runs of all tasks. The
average total migration time and downtime are 14.9 seconds
and 348.9 milliseconds respectivelly. The total number of
dirty pages for 3 executions is shown in Figure 5. Tasks



Fig. 4. Tracking the Total Number of Dirtied Pages for SPECsfs Workload

Fig. 5. Tracking the Total Number of Dirtied Pages for MapReduce Workload

related to computing the “page rank” modify memory pages
with a rate that is double that of “user visits” tasks. This is
because “page rank” involves a complex calculation on two
data sets. In all cases though, the page dirty rate is hardly over
50,000 pages/seconds ('200 MB/s), which is approximately
20% of the link capacity. Consequently, migration times are
approximately constant.

We use the HIST model to predict migration performance
for a node running MapReduce tasks. The model is able
to achieve good accuracy with less than 2% error (Table
III) between actual and predicted migration results. For long
running background MapReduce workloads, our simulation is
a close predictor.

6) Lower Link Speeds: 10 Gbps link speed is too fast
to show variability in migration times for MapReduce tasks
despite having different page modification rates. By doing
migration however on slower links we expect to get variable
migration results dependant on the current page dirty rate.
In Table IV we report minimum and maximum time values
for migrating MapReduce tasks on 100 Mbps link. Results
illustrate that a specific workload can have different migration
times if the link cannot send modified pages fast enough. We
also show the HIST model predictions which illustrate that our
simulation can capture variability in migration performance.
In other words, the HIST model provides bounds in which

TABLE IV
MIGRATION ON 100 MBPS LINK FOR MAPREDUCE TASKS. MT: TOTAL

MIGRATION TIME (IN SECONDS). DT: TOTAL DOWNTIME (IN
MILLISECONDS). VM SIZE= 4,096 MB. A: ACTUAL MEASUREMENT. P:

THE HIST MODEL’S PREDICTION.

MTA MTP DTA DTP

Min 525.82 s 567.80 s 629.00 ms 499.61 ms
Max 1,109.88 s 1,219.37 s 42,534.00 ms 45,431.12 ms

migration times are expected to lie. Furthermore, we can use
the HIST model to decide when it is best to do migration that
will result in minimum total migration time or/and downtime.

V. RELATED WORK

Live migration performance under Xen has been studied
before on various workloads such as simple webservers,
SPECweb99, low latency Quake 3 servers, up to “diabolical”
memory bound workloads [5]. We extend this work by char-
acterising the effects of the link speed, page dirty rate and VM
memory size. We also analyse SPECsfs and MapReduce tasks
as additional workloads.

The Remus project provides a high degree of fault toler-
ance using asynchronous virtual machine replication [23]. It
documented enhancements to the migration code to optimise
the final stop-and-copy stage. Remus implements a quick filter
of clean pages and maps the guest domain’s entire physical
memory to reduce mapping overhead. We follow similar
optimisations to minimise migration overheads and increase
throughput on 10 Gbps links but differ in doing this for the
entire migration process.

An automatic and transparent mechanism for proactive fault
tolerance for arbitrary MPI applications has been studied and
implemented using Xen live migration [6]. In their research,
the authors give a general overview on total migration time
and possible parameters affecting it, specifically the amount of
memory allocated to a guest VM. We provide a more detailed
study on all parameters affecting migration and their influence
on total migration time and downtime.

VI. FUTURE WORK

The experiments that we have carried out prove that the
migration link speed is the most influential parameter on
performance. We have been working on local area networks as-
suming live migration inside one datacentre. However, moving
workloads between different datacentres, especially for cloud
providers, is also useful. Providers might want to balance
loads over different datacentres, move resources geograph-
ically closer to clients for better response time, implement
disaster recovery capabilities at another site, or shift computa-
tions to areas where energy is available and cheap. For these
cases, the link latency has a significant effect on migration
performance due to geographical limitations. Consequently
the models outlined in this work become key instruments in
planning and efficiently scheduling migrations. We plan to
further utilise the models to study migration behaviour on wide
area networks.



As part of our research into Computing for the Future of the
Planet we are working on a new computing framework that
will automatically relocate workloads to chase surplus energy,
which would otherwise be wasted [24]. Energy is a significant
financial and environmental cost for datacentre operators. Our
framework will migrate computing jobs to the locations of
energy sources whilst maintaining service level agreement.
We believe this can be beneficial in absorbing intermittent
and distributed generation from renewable energy sources in
addition to exploiting geographic and temporal variation in
electricity prices [25]. Predicting the cost of migration is
an integral part to making an informed decision to where a
workload is relocated.

VII. CONCLUSIONS

In this paper, we studied live migration behaviour in pre-
copy migration architectures, specifically using the Xen vir-
tualisation platform. We show that the link speed and page
dirty rate are the major factors impacting migration behaviour.
These factors have a non-linear effect on migration perfor-
mance largely because of the hard stop conditions that force
migration to its final stop-and-copy stage.

We show that the Xen migration architecture does not scale
well with high speed (10 Gbps) links. We implemented several
optimisations that increased migration throughput by 125.5%
(from 3.2 Gbps to 7.12 Gbps). To the best of our knowledge,
this is the first study and characterisation of pre-copy migration
performance on 10 Gbps links.

Accurate prediction of migration performance is the objec-
tive of this work. Datacentre administrators need to provision
and control computing capacity in order to guarantee certain
performance levels that do not violate service level agreement.
Otherwise, customers are unsatisfied and penalties have to be
paid. In a virtualised environment, administrators can dynam-
ically change VM placements in order to plan maintenance,
balance loads, or save energy. Live migration is the tool used.
Migration times should be accurately predicted to enable more
dynamic and intelligent placements of VMs without degrading
performance.

To provide for this requirement we introduced 2 migration
simulation models based on the average rate at which memory
pages are dirtied in the VM and based on previous observations
of the rate at which the pages are modified. We validated and
verified both models showing that they are accurate to more
than 90% of actual results.

ACKNOWLEDGMENT

We are grateful to Steven Hand for his useful information
about the live migration under Xen. We would like also to
thank Kieran Mansley and Solarflare Communications for their
generous support of our activities and loan of assorted NICs.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proc. ACM Symposium on Operating Systems Principles (SOSP’03),
New York, NY, USA, 2003, pp. 164–177.

[2] XenMotion. Citrix Systems, Inc. [Online]. Available: http://www.
xenserver5.com/xenmotion.php

[3] VMotion. VMware, Inc. [Online]. Available: http://www.vmware.com/
products/vmotion/

[4] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-
box and gray-box strategies for virtual machine migration,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’07), Berkeley, CA, USA, 2007, pp. 229–242.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’05), Berkeley, CA, USA, 2005, pp. 273–286.

[6] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
fault tolerance for HPC with Xen virtualization,” in Proc. ACM Annual
International Conference on Supercomputing (ICS’07), New York, NY,
USA, 2007, pp. 23–32.

[7] M. Kozuch and M. Satyanarayanan, “Internet suspend/resume,” in
Proc. IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’02), Washington, DC, USA, 2002, pp. 40–46.

[8] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum, “Optimizing the migration of virtual computers,” ACM
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 377–390, 2002.

[9] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Grible, “Constructing ser-
vices with interposable virtual hardware,” in Proc. USENIX Symposium
on Networked Systems Design and Implementation (NSDI’04), Berkeley,
CA, USA, 2004, pp. 169–182.

[10] E. Zayas, “Attacking the process migration bottleneck,” ACM SIGOPS
Oper. Syst. Rev., vol. 21, no. 5, pp. 13–24, 1987.

[11] Amazon Elastic Compute Cloud (Amazon EC2). Amazon Web Services
LLC. [Online]. Available: http://aws.amazon.com/ec2/

[12] S. Hacking and B. Hudzia, “Improving the live migration process of
large enterprise applications,” in Proc. ACM International Workshop on
Virtualization Technologies in Distributed Computing (VTDC’09), New
York, NY, USA, 2009, pp. 51–58.

[13] Iperf. The National Laboratory for Applied Network Research. [Online].
Available: http://sourceforge.net/projects/iperf/

[14] F. Tomonori and M. Christie. Linux SCSI target framework. [Online].
Available: http://stgt.berlios.de/

[15] SPEC CPU2000. Standard Performance Evaluation Corporation.
[Online]. Available: http://www.spec.org/cpu2000/CINT2000/

[16] SPECweb99. Standard Performance Evaluation Corporation. [Online].
Available: http://www.spec.org/web99/

[17] SPEC SFS97. Standard Performance Evaluation Corporation. [Online].
Available: http://www.spec.org/sfs97r1/

[18] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proc. ACM International Conference on Management of
Data (SIGMOD’09), New York, NY, USA, 2009, pp. 165–178.

[19] D. A. Patterson, “Technical perspective: the data center is the computer,”
ACM Commun., vol. 51, no. 1, pp. 105–105, 2008.

[20] U. Höelzle and L. A. Barroso, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 2009.

[21] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” ACM Commun., vol. 51, no. 1, pp. 107–113, 2008.

[22] Hadoop. The Apache Software Foundation. [Online]. Available:
http://hadoop.apache.org/

[23] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “REMUS: high availability via asynchronous virtual ma-
chine replication,” in Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI’08), Berkeley, CA, USA, 2008, pp.
161–174.

[24] A. Hopper and A. Rice, “Computing for the future of the planet,”
Philosophical Transactions of the Royal Society, vol. 366, no. 1881,
pp. 3685–3697, 2008.

[25] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in Proc. ACM
Conference on Data Communication (SIGCOMM’09), New York, NY,
USA, 2009, pp. 123–134.


