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Understanding Biometric Entropy and Iris Capacity:
Avoiding Identity Collisions on National Scales

John Daugman1

Abstract—The numbers of persons who can be enrolled by
their iris patterns with no identity collisions is studied in relation
to the biometric entropy extracted, and the decision operating
threshold. The population size at which identity collision becomes
likelier than not, given those variables, defines iris “capacity.”
The general solution to this combinatorial problem is derived, in
analogy with the well-known “birthday problem.” Its application
to unique biometric identification on national population scales
is shown, referencing empirical data from US NIST (National
Institute of Standards and Technology) trials involving 1.2 trillion
(1.2 × 1012) iris comparisons. The entropy of a given person’s
two iris patterns suffices for global identity uniqueness.

I. INTRODUCTION

APPLICANTS for Cambridge University undergraduate
studies in mathematics or computer science are asked

sometimes in their College interviews to reason about the
“birthday problem”: how many people, chosen at random,
must be assembled until it becomes more likely than not
that at least one pair of them have the same birthday? Some
students are surprised that the answer is only 23 people.
Although arriving at the exact number requires a calculator,
the reasoning is that N people make N(N − 1)/2 possible
pairings. Given that each pairing has probability 1/365 of
sharing their birthday and 364/365 of not, the probability
that none of the pairings share a birthday is approximately
(364/365)N(N−1)/2, which is < 0.5 once N ≥ 23.

There is a clear analogy with biometric collision avoidance,
which we can formulate as the:

Biometric birthday problem: if some biometric
technology is operating with a verification FMR
(“one-to-one” False Match Rate), how many people,
chosen at random, must be assembled until it be-
comes more likely than not that at least one pair of
them have a biometric collision (are falsely matched
to each other)?

A good example is face recognition, tested across a broad
variety of scenarios and using a wide range of image quality,
for which a good performance benchmark corresponds to
making just one verification False Match in 1,000 non-mated
comparisons [1] [2] [3]. That accuracy standard is better
than human (even “super-recogniser”) performance in some
circumstances [3]. Face recognition algorithms have improved
greatly in recent years, in terms of Rank-1 identification rates
[1] [2] in test protocols in which a correct match does always
exist within a search gallery that is populated also with other
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“distractors”. But even in the recent tests, the best algorithms
do still make some False Matches to distractor images even
when there are only 100 distractors [1] [2] despite the presence
of a correct match within the gallery, that should instead
actually be returned at Rank-1.

Let us now consider the “biometric birthday problem” for a
face recognition algorithm performing at FMR = 0.001 when
examining a gallery of non-mated faces. How large must this
gallery get before False Matches become likelier than not, in
all-versus-all comparisons? The answer: just 38. That number
creates 38 · 37/2 = 703 possible pairings to consider, and
(1 − 0.001)703 = 0.495 so False Matches are then already
likelier than not. When waiting at Passport Control (or some
other such queue), it is entertaining to turn around, look at the
first 38 persons standing behind oneself, and try to spot the
pair of facial doppelgängers [4] among them.

Biometric deployments at a national or even prospectively
at the planetary scale face a massively challenging biometric
“birthday problem” if they need to search for any duplicate
identities, as was necessary in India when all 1.4 billion
citizens were recently enrolled in a national ID programme
for welfare distribution, government services, and subsidies
(UIDAI: Unique IDentification Authority of India) [5]. Be-
cause enrollees had an incentive to acquire multiple identi-
ties and thereby issuance of multiple subsidies, every new
enrollment had to be compared against all existing enrollments
before an Aadhaar would be issued. This amounts to a search
for identity collisions, all-versus-all, among an astronomical
N(N−1)/2 pairings of persons. Obviously any attempt to do
this by face recognition would drown in False Matches from
the very beginning. There simply is not enough entropy, or
randomness, in human face structure; the necessary functional
purposes of major facial features (mouth, nose, ocular areas)
constrain their possible randomness. The bilateral symmetry
normally present in a face further reduces its entropy by half.
The key idea, the fundamental factor underlying the power of
biometric identification, is entropy [6] [7].

Weak biometrics may be sufficient to enable “one-to-one”
verification; stronger biometrics may enable identification in
a search database of size N , “one-to-few” or “one-to-many”
depending on N ; but de-duplication applications exemplify the
birthday problem in that they are essentially “all-versus-all”,
and the number of False Match opportunities they must survive
grows massively with N . In such deployments on a national
scale, falsely detected or undetected identity collisions (even
if few in percentage) would lead to reduced public confidence
in and acceptance of the system, its impaired functionality,
and legal problems caused both by undetected duplicates and
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TABLE I
ACCURACY REQUIREMENTS FOR BIOMETRIC COLLISION AVOIDANCE

Verification FMR Critical Population Size N

0.001 38 persons

0.0001 119 persons

10−5 373 persons

10−6 1,177 persons

10−9 37,229 persons

10−12 1.2 million persons

10−15 37 million persons

10−18 1.2 billion persons

falsely detected ones. Table I presents, for a broad range of
FMR levels spanning 15 orders-of-magnitude, how large N
can get before collisions become likelier than not. Table I
clearly shows that the demands for a minuscule FMR become
extremely daunting once the population size N is even that of
a small town, let alone a population of national, continental,
or of planetary scale.

II. GENERAL SOLUTION FOR POPULATION BOUNDS

The number of pairings possible among N persons is
N(N − 1)/2 because each person can be paired with N − 1
others, but half of these are redundant (e.g. Alice and Bob,
then also Bob and Alice); hence the halving. If a biometric
technology is operating at some verification False Match Rate
FMR, then the probability of a given pairing not resulting in
a False Match is (1−FMR), and the probability that none of
the possible pairings do so is (1−FMR)N(N−1)/2. For what
value of N does this expression become < 0.5, and therefore
a biometric collision becomes likelier than not?

We will invoke a property of the base e “natural logarithm”
function loge=2.718...( ), commonly denoted ln( ). We seek:

(1− FMR)N(N−1)/2 < 0.5 (1)

ln
(
(1− FMR)N(N−1)/2

)
< ln(0.5) (2)

N(N − 1)

2
ln(1− FMR) < −0.693 (3)

Now using the power series expansion

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · , (4)

we have ln(1+x) ≈ x for small |x|, whether x ≥ 0 or x < 0.
Basically this reflects the fact that the logarithm function is
linear near where it crosses 0 at log(1), and the slope of this
line is 1 if the base of the logarithm is e. Thus for any small
FMR (say < 0.01), which also entails that N2 ≫ N , we have

−N(N − 1)

2
FMR ≲ −0.693 (5)

N2 ≳ 1.386/FMR (6)

N ≳
√
1.386/FMR (7)

This general (but approximated) solution can be confirmed
by evaluating (1) exactly, using for N each of the correspond-
ing FMR cases tabulated in Table I, insofar as the available
tools of calculation can handle the combinatorial exponents
required in (1) when N is large.

III. BIOMETRIC ENTROPY TO THE RESCUE

Entropy measures the complexity and randomness [6] that
is present in (and between) random variables. Facial structure
has limited capacity for randomness. The major facial features
have a canonical standard configuration, usually with bilateral
symmetry; the eyes are normally on opposite sides of the nose.
Much greater randomness is found in iris patterns, and this
is the origin of their legendary resistance to False Matches.
Although often there do exist strong radial correlations within
an iris, with mutual information as large as 0.3 bits per bit
across radius [8], and also IrisCode bits at adjacent or nearby
angles but a shared radial coordinate have “sticky oscillator”
correlations that reduce their entropy as much as 0.5 bits
per bit [7], nevertheless the remaining entropy is vast. Fig. 1
illustrates this graphically in the bit streams that constitute the
IrisCodes of four different eyes. How IrisCodes are computed
has been revealed previously [9]. The two bit values are
equiprobable, so when bits in IrisCodes from two different
eyes are compared by XOR (Exclusive-OR) to detect whether
they agree or disagree, these outcomes again are equiprobable,
amounting to the toss of a fair coin.

Fig. 1. Representation of the IrisCodes [9] produced by four different eyes.
The eight rows within each can be regarded as eight concentric rings, each
encoding a [0, 2π] traversal around the iris. (Eyelid masking is not shown.)

The non-independence among the bits in a given IrisCode
reduces their collective entropy from what would have been
a maximum of 2,048 bits (if each bit corresponded to an
independent “fair coin toss” Bernoulli trial) to only about 245
bits. Modelled as a “sticky oscillator” Markov process [7],
IrisCode bits exhibit a phase coherence that can persist across
several bits. Despite such losses in entropy, enough entropy
remains that the collision probability between two IrisCodes
from different eyes attenuates by astronomical factors, for
small reductions in the tolerated fraction of disagreeing bits.
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IV. DISCUSSION

A good way to understand this effect intuitively is to
consider tossing a fair coin in runs of 245 tosses, tallying each
run’s fraction of heads. The total number of possible outcome
sequences is 2245 and each of these has the same probability,
namely pi = 2−245 (including, say, the “all heads” sequence).
The entropy [6] contained in these possible sequences is:

H = −
∑
i

pi log2(pi) (8)

= −
2245∑
i=1

2−245 log2(2
−245) = 245 bits. (9)

The vast majority of these sequences will have a nearly equal
mix of heads and tails. The fraction of possible sequences that
have (say) fewer than 30% heads is less than one-billionth
of the total. This combinatorial property when large entropy
(245 bits) exists in a random variable is ultimately the reason
why, for iris recognition, a match between two IrisCodes can
be accepted even when (say) 30% of their bits disagree due to
problematic image acquisition. Despite such a lenient criterion
being so tolerant of noisy bits, the probability that such an
accepted match would actually be a False Match is, indeed,
less than 1 in a billion.

The huge exponents appearing in (9) (note that 2245 ≈ 1074)
are key to understanding why sufficient entropy is the basis
for biometric collision avoidance even at a planetary scale.
A detailed tabulation of the relevant probability distributions,
both densities and their cumulatives [9], with and without
selecting for best matches after multiple image rotations to
compensate for unknown head and camera tilt, is provided
at [10] as a function of Hamming distance HD (fraction of
bits that disagree in IrisCodes from two different eyes). This
probability table enables us to predict how tolerant we can
be of poor image acquisition (how large a fraction HD of
disagreeing bits we can tolerate and still declare a match),
without resulting in False Matches. The table [10] shows for
acceptance criteria HD the resulting False Match probability,
and its log10 (last two columns).

Table II extracts coarser HD increments of 0.01 from [10]
(first column), showing the corresponding FMR predictions
(second column). By 2003 image databases were only large
enough to perform about 10 million iris cross-comparisons
[9] but distribution parameters could be estimated, implying
249 bits of entropy (slightly more than 245), predicting FMR
performance very similar to what is shown in Table II. No
False Matches were observed below roughly the HD = 0.33
criterion, for the small databases available. The predicted FMR
values were generally dismissed with incredulity [11], because
such FMR performance was unknown in other biometrics.
But subsequently, other NIST researchers did actually perform
billions [12] and then more than a trillion iris comparisons
[13], obtaining FMR values in good agreement with those
predictions, as reported in column 3.

An important cause of skepticism about the FMR perfor-
mance levels shown in Table II, before they were eventually
confirmed by NIST, was the existence of ‘ground-truth’ errors
in early biometric databases that had created illusory identity

TABLE II
FALSE MATCH RATES PREDICTED IN [10], AND AS MEASURED BY

NIST [12] WITH 1.16 BILLION IRIS COMPARISONS, AND [13] WITH
1.2 TRILLION IRIS COMPARISONS

HD criterion FMR predicted in [10] NIST [12] [13] measured FMR

0.36 1 in 24,000 1 in 25,000

0.35 1 in 110,000 1 in 71,000

0.34 1 in 556,000 1 in 476,000

0.33 1 in 3.1 million 1 in 3.4 million

0.32 1 in 20 million 1 in 24 million

0.31 1 in 137 million 1 in 165 million

0.30 1 in 1.1 billion 1 in 2 billion

0.29 1 in 9 billion (not measured)

0.28 1 in 92 billion 1 in 40 billion

collisions. Apart from sloppy and naı̈ve data collection, (e.g.
incentivising paid student volunteers to change names and
thereby enroll multiple times), there is an inherent risk in
estimating FMR by intra-dataset cross-comparisons. If even
just one of N subjects is enrolled under two different iden-
tities, whether deviously or just through an innocent clerical
error, the estimated FMR then cannot be better than 2/N2.
The measured threshold calibration of FMR such as tabulated
in Table II must then approach a floor, corresponding to this
illusory FMR, which cannot be reduced by any reasonable
change in threshold, and indeed NIST [12] demonstrated this
problem for (university-sourced) intra-dataset comparisons.

NIST overcame this problem by performing inter-dataset
comparisons: if two disjoint populations, of sizes (say) N
and M in geographically remote places can be biometrically
enrolled, then N × M inter-comparisons become possible
without the contaminating effect of ground-truth errors. NIST
[13] acquired enrollment datasets for two populations “very
well separated geographically and occupationally,” one having
3.9 million iris images used as the gallery, and the other having
315,000 iris images used as probes to search against this entire
gallery, asserting there was zero likelihood of co-membership.
Thereby NIST performed N × M = 1.2 trillion IrisCode
comparisons, leading to the FMR results shown in Table II
column 3 (from [13] p. 61) for various HD threshold criteria.
This close confirmation of theory (column 2), manipulating
FMR over a larger than million-fold range, is striking.

V. DEMOGRAPHIC SPECIFIC APPLICATION

Iris pattern entropy differs somewhat across ethnic groups
[14]. For example, the anterior layer of the iris in persons
of Sub-Saharan African descent contains a thick blanket of
melanocytes [15] creating a coarser texture of crypts and
craters, than the finer fibrous details typically visible in an
iris of persons descended from more northern regions. Fig. 2
illustrates these entropy differences in samples from three
demographies: West African; Irish-American; and Nordic.

Using image databases having particular ethnic demograph-
ics, it is possible to estimate quantitatively their characteristic
entropies. Such calculations are needed in order to understand
how many persons can be enrolled before identity clashes
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Fig. 2. Entropy differences in iris patterns from three different demographic
groups: West African (top); Irish-American (middle); and Nordic (bottom).

in “all-versus-all” cross-comparisons (at a given acceptance
operating criterion), start to become likely. Fig. 3 illustrates
this process for a new West African database of iris images
[14] “AFHIRIS”, plotting the distribution of Hamming dis-
tances (HD, fraction of bits that disagree) between all possible
pairings of IrisCodes for different eyes. The red curve is a

plot of the following probability distribution prob(HD) for
the fraction of Heads (HD) in a run of N tosses of a coin
whose probability of Heads is p :

prob(HD) =
N !

m!(N −m)!
pm(1− p)(N−m) (10)

where in this case N = 228, p = 0.5, and HD = m/N is
the outcome fraction of N Bernoulli trials (e.g. observing m
Heads within a run of N coin tosses). Measuring the std dev σ
for an empirical distribution of HD scores from independent
pairings tells us the equivalent number of tosses of a coin
(having probability p of Heads), namely N = p(1 − p)/σ2.
The empirical distribution has σ = 0.0331, with p ≈ 0.5
(mean HD) so each toss adds 1 bit of entropy. Therefore we
estimate AFHIRIS biometric entropy as N = 228 bits. The
fit in Fig. 3 between the empirical distribution data and the
theoretical probability density curve (10) seems excellent.
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1,357,128 iris pairings

mean HD =  0.4985
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Fig. 3. Empirical histogram of “all-versus-all” cross-comparison Hamming
distance scores observed in the West African iris image database AFHIRIS,
superimposed with the theoretical bionomial probability density distribution
(red curve) which plots (10) using parameters p = 0.5 and N = 228.

As was visible in Fig. 2 and investigated in [14], biometric
entropy in iris patterns varies among ethnic groups. The range
observed spans from about 225 bits to 265 bits. Those values
impact the False Match Rates for any given operating point
(with higher entropy reducing the FMR), and therefore they
also affect how large a population of persons can be enrolled
without identity collisions in all-versus-all cross-comparisons.
Such a concept is sometimes called biometric “capacity”
[16] for a given modality and operating point. We can now
apply the framework that was introduced at the beginning of
this paper, the “biometric birthday problem,” to calculate iris
capacity across this observed range of entropies. For any given
estimate of biometric entropy, the FMR at a given operating
point can be calculated as described in [9] and tabulated in [10]
(for the case of N = 245 bits of entropy). Using (7) we arrive
at the numbers of persons who can be enrolled while identity
collision still remains unlikely. These numbers are presented
in Table III for two different HD operating thresholds and five
estimates of entropy, always assuming single eye enrollment,
to illustrate the combined effects of these variables.
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TABLE III
NUMBERS OF PERSONS ENROLLABLE, WITH ALL-VERSUS-ALL IRIS

CROSS-COMPARISONS UNLIKELY TO HAVE ANY IDENTITY COLLISIONS,
FOR TWO OPERATING POINTS. SINGLE EYE ENROLLMENT PRESUMED.

Encoded Iris Entropy HDthreshold = 0.28 HDthreshold = 0.24

225 bits 134,000 persons 16 million persons

235 bits 222,000 persons 32 million persons

245 bits 370,000 persons 66 million persons

255 bits 615,000 persons 136 million persons

265 bits 1.02 million persons 278 million persons

A way to estimate the scalability of face recognition systems
was proposed by [16]. They defined “face capacity” in terms
of packing bounds: the ratio of the total volume in a repre-
sentation space, to the volume that is required to represent
individual faces in it (as separate spheres or ellipsoids). This
yields an extreme upper bound estimate of capacity, because
there is no way to ensure that the spheres or ellipsoids for
different faces do not overlap. Such collisions or overlaps
certainly occur for identical twins, and even for unrelated
persons who are facial doppelgängers (as illustrated in this
collage [4] of examples.) Recent tests by NIST [2] show
that current face recognition algorithms fail completely to
distinguish between identical twins. About 1% of persons have
an identical twin, so in any sufficiently broad sample, face
representations must suffer identity clashes for at least those
1%. By contrast, it is well-known that the IrisCode produces
as much distance between the encoded iris patterns of identical
twins (or indeed between the two eyes of any given person)
as between unrelated eyes [9].

VI. CONCLUSION

Iris recognition is perhaps unique among biometrics in
having clear mathematical foundations, enabling strong pre-
dictions about IrisCode collision likelihood as a function of
the decision threshold. As shown in Table II, for decision
criteria in which no more than about 31% of the IrisCode
bits are allowed to disagree when declaring a match (which is
a very noise-tolerant criterion), the predicted FMR attenuates
by almost a factor of 10 for each additional 1% reduction in
the tolerated amount of bit disagreement. This extraordinary
fact seems not to be generally understood or appreciated; but
it is a direct result of using high-entropy random variables in
biometric codes. A critical lesson emerging here is the same as
a lesson from cryptography: the great power of randomness,
if you can get enough of it.

As confirmed independently by NIST in [13], the slope of
the IrisCode Decision Error Trade-off curves is so flat that
the FMR can be lowered by a factor of 10,000 to 100,000
while not even doubling the False non-Match rate (FnMR).
A consequence of this relationship is that only small costs in
increased FnMR need be paid, by lowering HD threshold, in
order to increase greatly the size of a biometrically enrolled
population without suffering collisions. Thus for IrisCodes
from any two different eyes, the probability of HD ≤ 0.29 is
about 10−10. If we also exploit the fact that a person’s two eyes
generate IrisCodes that are almost completely independent,

specifying 0.29 as a match criterion binocularly would yield
a fusion FMR of about 10−20. Equation (7) shows us that
this is how the planetary human population can survive the
“biometric birthday problem”: it is unlikely that even a single
pairing among 12 billion persons (despite the vast numbers of
possible pairings) would disagree in ≤ 29% of their IrisCode
bits for both pairs of eyes. Thus speaks biometric entropy.
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