
ETHNICITY AND BIOMETRIC UNIQUENESS: IRIS PATTERN INDIVIDUALITY IN A WEST AFRICAN DATABASE 1

Ethnicity and Biometric Uniqueness: Iris Pattern
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Abstract—We conducted more than 1.3 million comparisons
of iris patterns encoded from images collected at two Nigerian
universities, which constitute the newly available African Human
Iris (AFHIRIS) database. The purpose was to discover whether
ethnic differences in iris structure and appearance such as
the textural feature size, as contrasted with an all-Chinese
image database or an American database in which only 1.53%
were of African-American heritage, made a material difference
for iris discrimination. We measured a reduction in entropy
for the AFHIRIS database due to the coarser iris features
created by the thick anterior layer of melanocytes, and we
found stochastic parameters that accurately model the relevant
empirical distributions. Quantile-Quantile analysis revealed that
a very small change in operational decision thresholds for the
African database would compensate for the reduced entropy
and generate the same performance in terms of resistance to
False Matches. We conclude that despite demographic difference,
individuality can be robustly discerned by comparison of iris
patterns in this West African population.

Index Terms—Ethnicity, demographic differentials, African,
biometric entropy, iris recognition, Equity Measure.

I. INTRODUCTION

Aquestion of increasing salience today for deployment of
biometric identification technologies relates to ethnicity;

specifically, whether False Match probabilities are worse for
some ethnic groups than for others. This has become a
particularly notorious problem for face recognition algorithms,
with several reports [1] [2] [3] that persons of African descent
are much more likely than others to be mis-identified, or even
to be mis-classified by image classification systems as gorillas
[4]. A more subtle problem is bias among system designers, or
data bias creating limited representation in the image training
datasets, particularly given the dominance today of machine
learning approaches. If a training set is unrepresentative of
some ethnic groups (or indeed of gender, age, etc), then
performance is demonstrably worse for the poorly represented
groups [5]. This problem is compounded by the “black box”
nature of deep machine learning methods: it is difficult to
know, or even to try to discover, what such algorithms have
actually extracted from their training datasets.
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These problems clearly raise public policy issues, and can
generate scepticism, suspicion, or even resistance against bio-
metric deployments. There are also purely technical questions
related to ethnicity in biometrics, because some traits vary in
visibility among different ethnic groups, with possible effects
on identifiability. An obvious challenge for iris recognition,
for example, is that persons of East Asian heritage frequently
have much eyelid occlusion, which may leave less than 50% of
the iris visible. Likewise, persons of sub-Saharan African or of
Malaysian heritage usually have dense melanin pigmentation,
which limits the visibility of iris texture in visible wavelengths.
Most iris cameras use near-infrared illumination wavelengths
(NIR: 700 – 900nm) in which melanin is almost completely
non-absorbing, and therefore less problematic. Nonetheless the
anterior layer of the iris in persons of such descents contains a
thick blanket of chromatophore cells (superficial melanocytes)
[6] that create a coarser texture of crypts and craters as seen in
Fig. 1, almost lunar in appearance, rather than the fine fibrous
details more typically visible in the iris of persons having (say)
“blue eyes” which lack such a thick anterior layer.

There are core mathematical and scientific issues associated
with ethnic differences in the traits encoded by biometric
technologies. The random variation that is the basis of all
biometric discriminability among persons may vary in its
complexity or dimensionality across different ethnic groups. It
is even conceivable that within some unstudied demographic
group, all persons might have identical or very similar iris
patterns. Face recognition is bedevilled by genetic determinism
of facial appearance at a given age, causing current algorithms
to fail utterly to distinguish between monozygotic (MZ) twins,
and even between most dizygotic twins [7]. More than 2,000
genes are expressed in the iris [8], and it is well-known
that a person’s biogeographic ancestry is correlated with iris
colour and general textural appearance [9]. It is possible that
strong genetic coherence in some ethnic or social groups
which mainly inbreed (e.g. Quilombo; Amish; Haredi) [10]
[11] might limit variation among their iris patterns. Although
iris pattern detail seems to be epigenetic, as evidenced by
the observation that even genetically identical eyes such as
those of MZ twins or the two possessed by one person are
mathematically uncorrelated in their detailed iris texture [12]
[13], iris individuality has not been widely investigated within
different demographic groups.

Tools for the quantitative analysis of random variation
among patterns, and for comparison of their relative complex-
ity (specifically entropy) of random variation, are provided by
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Fig. 1. Sample images in the AFHIRIS dataset, illustrating the coarse “lunar” texture of craters and crypts. White contours show the results of automatic
image segmentation. IrisCode bit streams are depicted as binary pixel sequences in the upper-left of each image.

Information Theory [14] [15]. The purpose of this paper is to
apply such tools to a newly available database of iris images
acquired from persons of African descent (Nigerian university
students), a demographic group previously unstudied in such

biometric research. Our principal question is whether the
entropy among their iris patterns differs significantly from that
of other demographic datasets in which persons of African
descent are absent, such as the Chinese iris image datasets
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collected by the Chinese Academy of Sciences’ Institute of
Automation (CASIA) [16] [17], or the large University of
Notre Dame database [18] [19] of iris images in which the
ethnic identity of all subjects are tagged but only 1.53% are
tagged as of “black or African-American” descent. We hope
that this paper contributes to understanding whether, and to
what extent, ethnicity affects the ability of iris recognition to
discriminate individuals or allows False Matches instead.

II. DATABASES AND METHODS

The African Human Iris (AFHIRIS) database [20] is the first
of its kind, and it was made freely available in 2022. It was
collected from 1,028 student and staff volunteers (58% male,
42% female) at Ladoke Akintola University of Technology,
Oyo State, Nigeria, and at Landmark University in Omu-Aran,
Kwara State, Nigeria. About half of the subjects were aged
under 21 years, with the remainder aged 21 - 45 years. They
originated from 34 of the 36 States in Nigeria.

Images were captured using a Corvus VistaEY2H handheld
dual iris camera. In half of these the subject was wearing spec-
tacles, but because of the camera’s frontal illumination system,
very few of these were useable since the iris was heavily
obscured by specular reflections from the eyeglasses. Among
the other half of the images, acquired without spectacles, 20%
were in very poor focus and were discarded. Additionally,
eleven persons had been enrolled under multiple identities by
the student enrollers. After confirmation, those images were
also discarded as ground-truth errors. There remained a total
of 1,648 images (each one of a different eye) deemed to be of
sufficient quality for this study. Samples illustrating the best
image quality are provided in Fig. 1. Images were automati-
cally processed and enrolled into a database of IrisCodes using
the classical methods that have been described previously
[21] [22] [23] and which are used worldwide in all publicly
deployed systems for iris recognition. “All-against-all” cross-
comparisons were then performed on all possible pairings
among these 1,648 images, making a total of 1,357,128 unique
pairings, whose Hamming distances [22] were tabulated and
plotted as a histogram in the usual manner. Included among
them were comparisons between the right and left eyes of
individual persons, but these amounted to only 0.06% (i.e.
824 / 1,357,128) of all the IrisCode pairings. One photograph,
binocular and without spectacles, was taken for each person so
it is not possible to measure any same-eye Hamming distances.

We also used a Notre Dame database [18] [19] (29,986
images of 1,352 different eyes) and a CASIA database [16]
[17] (3,183 images of 400 different Chinese eyes) to contrast
biometric entropies, hence discriminability among different
persons, compared with AFHIRIS. Those image databases
were also without spectacles. Their gender and age distri-
butions were similar to AFHIRIS, being comprised mainly
of university students. The same classical IrisCode algorithm
[21] [22] [23] was used for all of this work. Recently there
has been great interest in alternative, automatically learned
(not human-designed) Deep Learning (DL) processes, which
did lead to revolutionary improvements in face recognition
and in some other fields within computer vision; but they

have not yet done so for iris recognition apart from some
benefits in segmentation and spoof detection. Moreover, it
is impossible to see into such “black boxes” to understand
what they have learned from their training data, encoded into
millions of learned parameters, across sometimes hundreds of
layers. Some independent researchers [24] have described this
current situation as the dichotomy between “Deep Learning
and deep understanding”.

Quoting from a recent very comprehensive survey [25] of
more than 200 papers applying DL to iris recognition: Most
of the DL methods “do not work under the one-shot learning
paradigm; assume multiple observations of each [eye] to obtain
appropriate decision boundaries; and – most importantly –
have encoding / matching steps with time complexity that
forbid their use in large environments (in particular, for
all-against-all settings)” [25]. Additionally, tests by the US
National Institute of Standards and Technology (NIST) [26]
indicate that the DL-based submissions (identifiable by their
heavyweight model size with millions of learned parameters)
fail to distinguish between genetically identical eyes. Unlike
the classical IrisCode algorithm, they return similarity scores
that are much closer for twins’ eyes, and also when comparing
the two eyes of a given person, than for unrelated eyes.
Probably this is because the DL “black boxes” are encoding
and matching periocular data from eye images, such as the
shape of the eyelids.

Finally, and of central importance for the topic of this
study, the DL methods perform poorly on NIST’s new ethnic
“Equity Measure for False Positives”. For a given algorithm,
this measure is defined as the factor by which the worst
False Match Rate (FMR) suffered by any ethnic group is
worse than the geometric mean FMR across all groups using
that algorithm. Obviously a value near 1.0 represents ethnic
fairness, while larger values progressively signify inequity.
The NIST report’s Demographics section [26] shows that
DL methods often produce inequity factors of 2.0 or higher,
whereas the classical IrisCode remains closer to 1.0 which sig-
nifies equal resistance to False Matches across ethnic groups.
Given the focus of the present paper, obviously we avoided
DL methods. The classical and widely deployed IrisCode
approach enables baseline comparisons of entropy estimates,
which in turn reveal likelihoods that two different biometric
identities may collide by chance. The findings which we will
present here, showing only a small impact of ethnicity on iris
discriminability, align with the new NIST Equity Measure for
False Positives [26] testing the same core IrisCode algorithm.

III. RESULTS

The histogram of Hamming distances (HD) across all
1,357,128 possible pairwise comparisons of IrisCodes in the
AFHIRIS database is plotted in Fig. 2. As expected, its mean
is close to 0.5 because the data bits in IrisCodes are equally
likely to be a 0 or 1, and thus when corresponding bits from
any two independent IrisCodes are compared, their four joint
possibilities (00, 01, 10, 11) are all equiprobable, so therefore
half of such paired bits are expected to disagree (HD = 0.5).
Indeed comparing pairs of bits using their Exclusive-OR to
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Distribution of Hamming Distances in AFHIRIS Cross−Compairsons
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1,357,128 iris pairings

mean HD =  0.4985

std dev =  0.0331

Fig. 2. Histogram of Hamming distances generated by all 1,357,128 pairwise
comparisons of IrisCodes computed from the AFHIRIS database.

detect disagreement, which reduces the above four pairs to
simply (0, 1, 1, 0) amounts itself to a toss of a fair coin. In
Fig. 2 it is clearly very unlikely that fewer than 40% of the
bits or more than 60% of the bits compared from independent
IrisCodes (HD < 0.4 or HD > 0.6) will disagree by chance.
This is for exactly the same reason that if one tosses a “fair
coin” (meaning its probability of coming up Heads is p = 0.5)
enough times, the outcomes are very unlikely to deviate far
from a 50% frequency of Heads. The critical consequence for
biometric iris recognition is that when two different IrisCodes
are compared, if their Hamming distance is smaller than
(say about) 0.3, then it is extremely unlikely that they arise
from different eyes. The probability that a sample from the
distribution in Fig. 2 will be HD < 0.3 is infinitesimally small.
This is the reason why iris recognition technology (using these
algorithms) has such a legendary resistance to False Matches
[15] [21] [27] and can survive very large database searches
without making any, for example in de-duplication operations
by performing all-against-all cross-comparisons.

Most informative is the distribution’s standard deviation,
σ = 0.0331, because this reveals the entropy within this
database. The greater the number of coin tosses, the narrower
the distribution of fractional outcomes will be (regardless of
whether the coin is “fair”, or not). In fact the std dev σ
varies inversely with the number of independent tosses. This
allows us to estimate the entropy of iris patterns (a measure of
their amount of random variation) as the equivalent number of
coin tosses that would generate such a distribution when their
IrisCodes are compared to compute a Hamming distance. For
the AFHIRIS database, it corresponds to 228 tosses of a fair
coin in a run. In terms of Information Theory, that means 228
bits of entropy: each toss of a fair coin has 1 bit of entropy
(but less if p ̸= 0.5). In Fig. 3, the same histogram as plotted
in Fig. 2 is superimposed with a curve showing the binomial
probability density distribution corresponding to tossing a fair
coin 228 times in each of many runs, and then tabulating the
frequency of observing any given fraction (HD) of Heads, after
performing many such runs.
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Comparison of Empirical AFHIRIS and Theoretical Density Distributions
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Fig. 3. The histogram from Fig. 2 combined with a theoretical bionomial
probability density distribution (red curve), which plots (1) using parameters
p = 0.5 and N = 228.

The red curve in Fig. 3 is a plot of the following probability
distribution prob(HD) for the fraction of Heads (HD) in a run
of N tosses of a coin whose probability of Heads is p :

prob(HD) =
N !

m!(N −m)!
pm(1− p)(N−m) (1)

where in this case N = 228, p = 0.5, and HD = m/N is
the outcome fraction of N Bernoulli trials (e.g. observing m
Heads within a run of N coin tosses). (1) can be understood
as the product of a combinatorial term and a probability term.
The combinatorial term is simply the binomial coefficient for
the number of different ways in which m items can be selected
out of N : (

N
m

)
=

N !

m!(N −m)!

This is multiplied by the probability term, which expresses
the joint probability that the outcome whose probability is p
occured m times while the alternative outcome whose proba-
bility is (1− p) occured the remaining (N −m) times. Thus
the joint probability associated with any outcome sequence
tabulated in the combinatorial term is pm(1 − p)(N−m). It is
noteworthy that in the case that p = 0.5, this joint probability
term does not depend on m, hence Hamming distance, at all.
The shape of the overall probability distribution then arises
entirely from the combinatorial term. Measuring the std dev σ
for an empirical distribution of HD scores from independent
pairings tells us the equivalent number of tosses of a coin
(having probability p of Heads), namely N = p(1−p)/σ2. In
Fig. 2 we measured σ = 0.0331, and therefore we estimated
that the biometric entropy shown in the AFHIRIS database by
cross-comparisons among all pairings was N = 228 bits. The
fit in Fig. 3 between the empirical distribution data and the
theoretical probability density curve seems to be excellent.

The estimated entropy in a University of Notre Dame
database of iris images (in which only 1.53% were tagged
as of African descent) is larger, corresponding to N = 260
bits. Its histogram of cross-comparison HD scores is shown
in Fig. 4 (red), superimposed on that for AFHIRIS (black).
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Comparison of AFHIRIS and Notre Dame Density Distributions
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Fig. 4. The histogram from Fig. 2 for the AFHIRIS database (black bars),
superimposed with the histogram from cross-comparisons [13] within a large
Notre Dame database [18] [19] (red bars).

This difference may reflect the coarser structure in African
iris patterns, as seen in Fig. 1, because a fundamental link
exists in Information Theory between bandwidth and channel
capacity. Lower frequency (coarser) structure is “less busy,”
with slower variation, hence lower entropy. But as we shall
assess quantitatively, this level of demographic difference in
entropy has only a small operational impact on the deployment
parameters (decision thresholds) necessary to maintain the
same powers of iris discrimination.

In Fig. 5 we also superimpose the distribution of AFHIRIS
all-against-all cross-comparison scores (black) with the dis-
tribution of such scores obtained from cross-comparisons
(blue) within a database of all-Chinese eyes, acquired by the
Chinese Academy of Sciences (CASIA) [16] [17]. The contrast
between these two distributions is similar to that observed in
Fig. 4. The AFHIRIS distribution reveals a somewhat smaller
entropy: a somewhat larger stn dev σ. (The small shifts in the
mean HD score below 0.5 for all three of these distributions
seem to arise from illumination gradients created by the
local acquisition conditions. Shared gradients within an image
dataset reduce cross-comparison HD scores slightly, because
the wavelet encodings are sensitive to spatial derivatives even
on a gross scale [22].) The main contrast observable in Fig. 5,
the larger stn dev σ for the AFHIRIS database, can be related
to the coarser scale African iris texture features as illustrated
in Fig. 1 relative to those in Chinese eyes as illustrated in the
samples provided at [17].

IV. DISCUSSION

Another aspect of some Nigerian iris patterns which may
contribute to some loss of entropy relative to Caucasian or
Chinese eyes eyes is the occasional appearance of broad radial
“stripey” patterns as illustrated in Fig. 6. Just as with the
coarse pattern of “lunar” craters seen in Fig. 1, their large scale
reduces entropy by imposing a slower form of variation. To
the extent that such patterns confine variation to just a single
(polar) variable, namely variation along the angular coordinate
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Comparison of AFHIRIS and CASIA Density Distributions
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Fig. 5. The histogram from Fig. 2 for the AFHIRIS database (black bars),
superimposed with the histogram of cross-comparisons within a database of
all-Chinese eyes [16] [17] (blue bars).

but much less along the radial coordinate, such structures
reduce information capacity for the same reason that a 1-D
bar code is a channel with less information capacity than a
2-D bar code.

IrisCodes must be compared over a range of possible “tilt
angles” (polar rotations) for a match, because the camera or
the head may be tilted, and indeed each eye has a range
of cyclotorsion (rotation around its optical axis), reflecting
the fact that each eyeball’s pose within its orbital socket is
controlled by not just two but three pairs of attached muscles
[6]. Therefore the search engine attempts multiple matches
after scrolling each IrisCode over some reasonable range of
relative rotations, in steps of 360o/128 ≈ 2.81 degrees.
Usually seven rotations are attempted before assessing the
“best match” possible between any two IrisCodes, but more
may be required with handheld monocular cameras (as used in
common smartphones) because they are often held at bigger
tilt angles. Retrieving the best match after seven comparison
rotations spans a tilt range of about 20 degrees.

Attempting multiple matches over some range of candidate
rotations and recording only the closest match amounts to
Extreme Value Sampling of the histogram distributions shown
earlier. Obviously the mean HD score is reduced and a skew
bias is introduced, as can be seen in the histogram of Fig. 7,
because only the smallest sample from each set of sample
scores is retained.

The analysis of this effect can be given a general theoretical
form. Let f1(x) be whatever density distribution is obtained
for HD scores x between different IrisCodes when compared
for only a single relative image tilt. For example, f1(x) might
be the fractional binomial defined as prob(HD) in (1). Its
cumulative F1(x) is the probability of getting a score of x
or smaller:

F1(x) =

∫ x

0

f1(x)dx (2)

or, equivalently,

f1(x) =
d

dx
F1(x) . (3)
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Fig. 6. Sample images in the AFHIRIS dataset illustrating coarse “stripey” radial structure. White contours show the results of automatic image segmentation.

The probability of not getting a score that is smaller than
x is therefore 1 − F1(x) in single comparisons, and it is
[1− F1(x)]

k after carrying out k such tests independently
when considering k different relative tilt angles. Thus the
cumulative probability distribution Fk(x) for observing an HD
score that is x or smaller after optimising for relative image
tilt is

Fk(x) = 1− [1− F1(x)]
k
, (4)

and the probability density distribution fk(x) expected for this
cumulative is:

fk(x) =
d

dx
Fk(x)

= kf1(x) [1− F1(x)]
k−1

. (5)

In the specific case that the raw density distribution f1(x)
for HD scores is the fractional binomial density prob(HD) as
defined in (1), with parameter N = 228, and k = 7 relative
tilt angles before selecting the best match in each such group
of tilts, the predicted Extreme Value probability distribution
fk(x) is the red curve plotted in Fig. 7. It seems to provide an
excellent fit to the empirical data (black bars) for such matches
after rotations, and it supports further conclusions.
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Fig. 7. Histogram of best HD scores obtained after attempting seven relative
image tilts. The red curve is (5), the theoretical Extreme Value density fk(x)
associated with f1(x) as defined in (1).
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V. CONCLUSIONS

Considering biometric identification in the context of Infor-
mation Theory, iris patterns can be regarded as communication
channels [15] where identity is the “signal” being transmitted,
and whose channel capacity to distinguish different signals is
measured in bits (or bits/mm2). If channel entropy estimated
in bits (the equivalent number of Bernoulli trials in Fig. 3)
is larger, then more signals can be reliably discriminated. The
distribution of cross-comparison HD scores becomes narrower
(reduction in σ), so its cumulative up to any given HD decision
criterion is reduced, both in the raw (Fig. 3) and post-rotations
(Fig. 7) distributions, reducing probability of False Matches.

A Kolmogorov-Smirnov test assessing the likelihood that
the two collections of samples shown in Fig. 4 (one from cross-
comparisons within the Notre Dame database, and the other
from within AFHIRIS) could be drawn from the same dis-
tribution function, rejects this null hypothesis at astronomical
levels. This is not surprising, given the large number of cross-
comparison scores in each distribution. The same conclusion
arises from performing a Kolmogorov-Smirnov test to com-
pare the CASIA and AFHIRIS distributions shown in Fig. 5.
Regarding operational significance of the AFHIRIS entropy
reduction, it is useful to construct Quantile-Quantile (QQ)
plots as presented in Fig. 8 for Notre Dame and AFHIRIS.
They plot the HD decision criterion which, if adopted for one
distribution, would reach the same cumulative value (hence the
same probability of False Matches) as the other distribution
would reach at some other criterion. Fig. 8 shows this both
for the raw distributions (left panel) and for the post-rotations
distributions (right panel).

Choosing a particular HD value may provide an illustrative
example. Measuring offsets in the post-rotation QQ plot of
Fig. 8 shows that to achieve False Match resistance comparable
to that obtained when operating at a decision threshold of
around (say) HD = 0.39 for the Notre Dame database (which
contained overwhelmingly Caucasian eyes, and only 1.53%
African-American eyes), the decision threshold should just be
reduced to around HD = 0.38 for eyes in this West African
demographic group. We conclude that with such minor adjust-
ments to compensate for reduced entropy, associated with the
comparative scale of features, iris recognition technology can
be deployed in this demographic group without any necessary
compromise to its now legendary resistance to False Matches.
This conclusion aligns with the recent NIST presentation [26]
of its ethnic Equity Measure for False Positives, which hovers
near 1.1 for the IrisCode algorithm. But this inequity factor
ranges up to 2.0 or 3.0 for DL-based submissions. Although
the present AFHIRIS database is too small to test False Match
rates at the 1-in-a-million level (HD < 0.33) or 1-in-a-billion
level (HD < 0.30), it is noteworthy that NIST did validate and
confirm [15] those rates as were predicted long ago [21] by the
methods discussed here, when NIST completed 1.2 trillion iris
comparisons [27] across geographically disjoint populations.
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Equity Measure [26]; and to the Chinese Academy of Sciences
Institute of Automation, and to the University of Notre Dame,
for making biometrics databases available [16] [17] [18] [19].

Statistical analyses, and the generation of figures, were
performed using the ‘R’ package: https://cran.r-project.org/

Institutional Review Board approvals: Ladoke Akintola
University of Technology (ref: LODLC/ERC/2022/024), and
Landmark University (ref: LMUERC/CRN/2021/0089). Sub-
jects granted permission for image research and publication.
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