
Xen and the Art of
Virtualization

Ian Pratt
Keir Fraser, Steve Hand, Christian Limpach,
Dan Magenheimer (HP), Mike Wray (HP),
R Neugebauer (Intel), M Williamson (Intel)

Computer Laboratory

Outline

Virtualization overview
Xen 2.0 Features
Architecture
Performance
Xen para-virtualized binary interface

Linux 2.6 on Xen/x86
Work in Progress

Virtualization Overview

Single OS image: Ensim, Vservers, CKRM
Group user processes into resource containers
Hard to get strong isolation

Full virtualization: VMware, VirtualPC
Run multiple unmodified guest OSes
Hard to efficiently virtualize x86

Para-virtualization: UML, Xen
Run multiple guest OSes ported to special arch
Arch Xen/x86 is very close to normal x86

Xen 2.0 Features

Secure isolation between VMs
Resource control and QoS
Only guest kernel needs to be ported

All user-level apps and libraries run unmodified
Linux 2.4/2.6, NetBSD, FreeBSD, WinXP

Execution performance is close to native
Live Migration of VMs between Xen nodes
Xen hardware support:

SMP; x86 / x86_64 / ia64; all Linux drivers

Xen 1.2 Architecture

Unmodified User-
Level Application

Software

Ported ‘Guest’
Operating Systems

Xen Hypervisor

Hardware

Domain 0 Domain 1 Domain 2 Domain 3

Xen 2.0 Architecture

Unmodified User-
Level Application

Software

Ported ‘Guest’
Operating Systems

Xen Hypervisor

Hardware

Domain 0 Domain 1 Domain 2 Domain 3

System Performance

L X V U

SPEC INT2000 (score)

L X V U

Linux build time (s)

L X V U

OSDB-OLTP (tup/s)

L X V U

SPEC WEB99 (score)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Benchmark suite running on Linux (L), Xen (X), VMware Workstation (V), and UML (U)

Xen Para-Virtualization

Arch Xen/x86 – like x86, but replace
privileged instructions with Xen hypercalls

Avoids binary rewriting and fault trapping
For Linux 2.6, only arch-dep files modified

Modify OS to understand virtualised env.
Wall-clock time vs. virtual processor time
• Xen provides both types of alarm timer

Expose real resource availability
• Enables OS to optimise behaviour

x86 CPU virtualization

Xen runs in ring 0 (most privileged)
Ring 1/2 for guest OS, 3 for user-space

GPF if guest attempts to use privileged instr
Xen lives in top 64MB of linear addr space

Segmentation used to protect Xen as switching
page tables too slow on standard x86

Hypercalls jump to Xen in ring 0
Guest OS may install ‘fast trap’ handler

Direct ring user-space to guest OS system calls
MMU virtualisation: shadow vs. direct-mode

MMU Virtualizion : Shadow-Mode

MMU

Accessed &
dirty bits

Guest OS

VMM
Hardware

guest writes

guest reads Virtual → Pseudo-physical

Virtual → Machine

Updates

MMU Virtualization : Direct-Mode

MMU

Guest OS

Xen VMM
Hardware

guest writes

guest reads

Virtual → Machine

Para-Virtualizing the MMU

Guest OSes allocate and manage own PTs
Hypercall to change PT base

Xen must validate PT updates before use
Updates may be queued and batch processed

Validation rules applied to each PTE:
1. Guest may only map pages it owns*
2. Pagetable pages may only be mapped RO

Xen tracks page ownership and current use
L4/L3/L2/L1/Normal (plus ref count)

MMU Micro-Benchmarks

L X V U

Page fault (µs)
L X V U

Process fork (µs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

lmbench results on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)

Queued Update Interface (Xen 1.2)

MMU

Guest OS

Xen VMM
Hardware

validation

guest
writes

guest reads
Virtual → Machine

Writeable Page Tables (1)

MMU

Guest OS

Xen VMM
Hardware

page fault

first guest
write

guest reads

Virtual → Machine

Writeable Page Tables (2)

MMU

Guest OS

Xen VMM
Hardware

guest writes

guest reads

Virtual → MachineX

Writeable Page Tables (3)

MMU

Guest OS

Xen VMM
Hardware

page fault

guest writes

guest reads

Virtual → MachineX

Writeable Page Tables (4)

MMU

Guest OS

Xen VMM
Hardware

validate

guest writes

guest reads

Virtual → Machine

Segmentation Support

Segmentation req’d by thread libraries
Xen supports virtualised GDT and LDT
Segment must not overlap Xen 64MB area
NPT TLS library uses 4GB segs with –ve offset!
• Emulation plus binary rewriting required

x86_64 has no support for segment limits
Forced to use paging, but only have 2 prot levels
Xen ring 0; OS and user in ring 3 w/ PT switch
• Opteron’s TLB flush filter CAM makes this fast

I/O Architecture

Xen IO-Spaces delegate guest OSes
protected access to specified h/w devices

Virtual PCI configuration space
Virtual interrupts

Devices are virtualised and exported to
other VMs via Device Channels

Safe asynchronous shared memory transport
‘Backend’ drivers export to ‘frontend’ drivers
Net: use normal bridging, routing, iptables
Block: export any blk dev e.g. sda4,loop0,vg3

Device Channel Interface

TCP results

L X V U
Tx, MTU 1500 (Mbps)

L X V U
Rx, MTU 1500 (Mbps)

L X V U
Tx, MTU 500 (Mbps)

L X V U
Rx, MTU 500 (Mbps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

TCP bandwidth on Linux (L), Xen (X), VMWare Workstation (V), and UML (U)

Isolated Driver VMs

0

 50

 100

 150

 200

 250

 300

350

0 5 10 15 20 25 30 35 40
time (s)

Live migration for clusters
Pre-copy approach: VM continues to run
‘lift’ domain on to shadow page tables

Bitmap of dirtied pages; scan; transmit dirtied
Atomic ‘zero bitmap & make PTEs read-only’

Iterate until no forward progress, then stop
VM and transfer remainder
Rewrite page tables for new MFNs; Restart
Migrate MAC or send unsolicited ARP-Reply
Downtime typically 10’s of milliseconds

(though very application dependent)

Scalability

Scalability principally limited by Application
resource requirements

several 10’s of VMs on server-class machines

Balloon driver used to control domain
memory usage by returning pages to Xen

Normal OS paging mechanisms can deflate
quiescent domains to <4MB
Xen per-guest memory usage <32KB

Additional multiplexing overhead negligible

Scalability

L X
2

L X
4

L X
8

L X
16

0

200

400

600

800

1000

Simultaneous SPEC WEB99 Instances on Linux (L) and Xen(X)

Resource Differentation

2 4 8 8(diff)
OSDB-IR

2 4 8 8(diff)
OSDB-OLTP

0.0

0.5

1.0

1.5

2.0

Simultaneous OSDB-IR and OSDB-OLTP Instances on Xen

A
gg

re
ga

te
 th

ro
ug

hp
ut

 re
la

tiv
e

to
 o

ne
 in

st
an

ce

On-Going Work

xend web control interface
Cluster management tools

Load balancing

SMP guest OSes (have SMP hosts already)
Support for Intel VT/LT x86 extensions

Will enable full virtualization

VM Checkpointing
Debugging and fault tolerance

Conclusions

Xen is a complete and robust GPL VMM
Outstanding performance and scalability
Excellent resource control and protection
Linux 2.6 port required no modifications
to core code

http://xen.sf.net

