
CTSRD Peter G. Neumann, Robert N. M. Watson, and Simon W. Moore
Jonathan Anderson, Ross Anderson, David Chisnall, Nirav Dave, Brooks Davis, Rance DeLong, Khilan Gudka, Steven Hand, Alex Horsman, Jong Hun Han, Asif Khan, Myron King, Ben Laurie,
Patrick Lincoln, Anil Madhavapeddy, Ilias Marinos, Dr Theo A. Markettos, Ed Maste, Andrew W. Moore, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Robert Norton, Philip Paeps,
Michael Roe, Colin Rothwell, John Rushby, Hassen Saidi, Muhammad Shahbaz, Stacey Son, Richard Uhler, Philip Withnall, Jonathan Woodruff, Bjoern A. Zeeb

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/
presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Dr Peter G.
Neumann

Dr Nirav
Dave

Dr Robert N. M.
Watson

Dr Michael
Roe

Mr Stacey
Son

Members of the CTSRD team and its external oversight group at our May 2011 review meeting in Cambridge, UK

Joe Stoy (Bluespec), Jonathan Woodruff (Cambridge), Ben Laurie (Google), Ross Anderson (Cambridge),
Virgil Gligor (CMU), Philip Paeps (Cambridge), Li Gong (Mozilla), Peter Neumann (SRI)

Simon Cooper, Michael Roe (Cambridge), Robert Watson (Cambridge), Howie Shrobe (DARPA),
Steven Murdoch (Cambridge), Sam Weber (NSF), Jonathan Anderson (Cambridge), Simon Moore (Cambridge)

Anil Madhavapeddy (Cambridge), Dan Adams (DARPA), Rance DeLong (LynuxWorks),
Jeremy Epstein (SRI), Hassen Saidi (SRI)

Mr Brooks
Davis

Dr David
Chisnall

Dr Khilan
Gudka

Members of the CTSRD and MRC2 teams meet for our August 2013 annual meetings in Cambridge, UK.

Ed Maste, Prashanth Mundkur, Steven Murdoch, Jong Hun Han, Hassen Saidi, Khilan Gudka, Colin Rothwell,
Peter G. Neumann, Malte Schwarzkopf, Brooks Davis, Nirav Dave, Jonathan Woodruff, Bjoern Zeeb, Robert Norton,

David Chisnall, Alan Mujumdar, Alex Horsman

Andrew Moore, Simon Moore, Robert Watson

Dr Simon W.
Moore

Mr Rance
DeLong

Dr Theo A.
Markettos

Mr Colin
Rothwell

Mr Ed
Maste

Dr Jonathan
Anderson

Capsicum and the application compartmentalization motivation
Programmers are turning to application compartmentalization to mitigate inevitable
vulnerabilities: software is decomposed into sandboxes in accordance with the
principle of least privilege. As granularity increases, individual sandbox rights
decrease. Only the rights of compromised components are leaked, forcing attackers
to exploit more vulnerabilities to accomplish the same goals.

However, compartmentalization scalability – utilization of increasing numbers of
sandboxes – is constrained by performance and programmability limitations of
current hardware and software. Today's CPU instruction set architectures (ISAs)
reflect a 1990s design consensus conflating virtualization and protection, limiting
protection scalability. Compartmentalizing applications using IPC-linked processes
also introduces distributed systems programming problems for local applications.

Capability-enabled Clang and LLVM
We have extended the Clang/LLVM compiler to generate CHERI ISA instructions
based on new C-language annotations and Internal Representation (IR) intrinsics.
We add a __capability pointer qualifier, triggering CHERI instructions generation,
inferring bounds checks and permissions from type information (e.g., arguments to
allocation functions and const). These are dynamically enforced. MIPS and CHERI
functions interleave seamlessly allowing gradual migration. Memory capabilities are
the type-safety foundation for shared memory between protection domains.

CTSRD is developing a principled, formally-supported, robust, programmer-friendly,
high-performance and incrementally adoptable hardware/software platform designed
for efficient implementation of the principle of least privilege. Hardware and
software security structures and design principles are reinforced by:

• Capability Hardware Enhanced RISC Instructions (CHERI)
• Security Oriented Analysis of Application Programs (SOAAP)
• Smten formal verification suite for Bluespec HDL
• Temporally Enforced Security Logic Assertions (TESLA)

CTSRD adopts a hybrid approach, running current C-language operating systems
and applications while supporting gradual adoption of novel protection features in
both critical Trusted Computing Bases (TCBs) and high-risk software components.

CHERI tablet and rack-mount CheriCloud array, based on Terasic's DE4 FPGA board. CHERI CPUs
support fine-grained compartmentalization, mitigating broad classes of known and unknown vulnerabilities.

Call malloc()
ld $25, %call16(malloc)($18)
jalr $25
Load the address of fillArray
ld $25, %call16(fillArray)($18)
Set the length of the capability
cincbase $c1, $c0, $2
Call fillArray
jalr $25
Set capability length (in branch-delay slot)
csetlen $c1, $c1, $16
Load the value (causing capability violation trap)
clw $16, $1, 0($c1)

Get the tag bit
CGetTag $1, $c1
andi $1, $1, 1
If it's zero, skip to the return
beq $1, $zero, $BB1_2
nop
Clear the write permission
ori $2, $zero, 65495
candperm $c1, $c1, $2
Load the address of the fillArray() function
ld $25, %call16(fillArray)($1)
Get the capability length for the second argument
cgetlen $2, $c1
Call fillArray
jalr $25

Bounds checking

Capability tagging and permissions

openssl-api.c:211#0

state 0
(⋆)

state 1
(⋆)

main(⋆,⋆)
(Entry)
«init»

state 2
(cert)

X509_STORE_CTX_init(⋆,⋆,cert,⋆) == TSEQUENCE

state 3
(cert)

X509_verify_cert(⋆) == TSEQUENCE

state 4
(cert)

NOW

state 5
(cert)

main(⋆,⋆) == ⋆
«cleanup»

match "a.c:120#0", x, y

TEAL compiler

LLVMTESLA "optimiser"Clang

TESLA analyser
C

Manifest
(TESLA IR)

Translate

Codegen object
filesCompile Instrument

TEAL

Extract

void
use_cert(X509 *cert)
{
#ifdef TESLA

TESLA_WITHIN(main, previously(
X509_STORE_CTX_init(ANY(ptr), ANY(ptr), cert, ANY(ptr)) == 1,
X509_verify_cert(ANY(ptr)) == 1

));
#endif

/* use the certificate ... */
}

automaton {
 identifier {
 location {
 filename: "openssl-api.c"
 line: 188
 counter: 0
 }
 }
 context: ThreadLocal
 expression {
 type: SEQUENCE
 sequence {
 expression {
 type: FUNCTION
 function {
 function {
 name: "X509_STORE_CTX_init"
 }
 direction: Exit
 context: Callee
 [...]
 argument {
 type: Variable
 index: 0
 name: "cert"
 }
 [...]
 expectedReturnValue {
 type: Constant
 value: 1
 }

Temporally Enhanced Security Logic Assertions (TESLA)
TESLA allows programmers to describe temporal properties of security-critical
software and validate them at runtime. Programmers describe these properties with
inline assertions or explicit finite-state automata. Both forms of TESLA specification
are written in C, referencing names from surrounding scopes and exploiting the
compiler's type checker. Both are converted to a TESLA intermediate representation
(IR), allowing other languages to target the TESLA backend as well.

$ diff openssl-api.ll openssl-api.instr.ll
 ; Function Attrs: nounwind ssp uwtable
 define i32 @main(i32 %argc, i8** %argv) #0 {
 entry:
+ call void @__tesla_instrumentation_callee_enter_main(i32 %argc, i8** %argv)
 %retval = alloca i32, align 4
 %argc.addr = alloca i32, align 4
 %argv.addr = alloca i8**, align 8
@@ -147,6 +168,7 @@

 return: ; preds = %if.end16, %if.then
 %20 = load i32* %retval, !dbg !649
+ call void @__tesla_instrumentation_callee_return_main(i32 %argc, i8** %argv, i32 %20)
 ret i32 %20, !dbg !649
 }

@@ -386,7 +408,9 @@
 %cert.addr = alloca %struct.x509_st*, align 8
 store %struct.x509_st* %cert, %struct.x509_st** %cert.addr, align 8
 call void @llvm.dbg.declare(metadata !{%struct.x509_st** %cert.addr}, metadata !780), !dbg !781
- call void (i8*, i32, i32, %struct.__tesla_locality*, ...)* @__tesla_inline_assertion(i8* getelementptr
+ %intrumentation_cert = load %struct.x509_st** %cert.addr, !dbg !782
+ %0 = ptrtoint %struct.x509_st* %intrumentation_cert to i64, !dbg !782
+ call void @__tesla_instrumentation_assertion_reached_0(i64 %0), !dbg !782
 ret void, !dbg !783
 }

In this example, TESLA observes the `main()` entry event, so it creates an automaton
instance and moves it from state 0 to state 1. However, it does not observe the
`X509_STORE_CTX_init() == 1` event (this is the cause of the verification flaw), so
when the `NOW` event occurs, TESLA cannot find an automaton instance named
(cert=0x7fda614147c0,⋆,⋆,⋆). The certificate has not been verified!

TESLA failure:
In automaton 'openssl-api.c:211#0':
automaton 0 {

state 0: --(main(X,X): Entry)-->(1 <<init>>)
state 1: --(X509_STORE_CTX_init(X,X,cert,X) == 1)-->(2)
state 2: --(X509_verify_cert(X) == 1)-->(3)
state 3: --(NOW)-->(4)
state 4: --(main(X,X) == X)-->(5 <<cleanup>>)
state 5:

}
openssl-api: No instance matched key '0x1 [7fda614147c0 X X X]' for transition(s) [(3:0x1 -> 4)]

In the example below, the programmer asserts that the X.509 certificate passed to
the use_cert function has been properly verified. In fact, however, the certificate
verification code suffers from the vulnerability in CVE-2008-5077: an OpenSSL
error code has been misinterpreted as success.

TESLA instruments the program as expressed in LLVM IR.
Any language that targets LLVM can be instrumented.
TESLA generates code to convert program events like
function entry/return or structure field assignment into
symbols that are consumed by TESLA automata.

Security Oriented Analysis of Application Programs (SOAAP)
Experience with Capsicum shows that adapting programs for compartmentalization
is difficult, leading to problems with correctness, performance, complexity, and
critically, security. SOAAP is a set of techniques to assist with compartmentalization.

Compartmentalization hypotheses are explored
through source-code annotations describing
sandboxing strategy (e.g., sandbox creation, rights
delegation, and RPC forwarding). Security goals
and properties (e.g., information flow constraints
and past vulnerabilities) as well as acceptable
performance overhead are labeled in source code.

SOAAP engages the developer in a dialogue,
identifying potential bugs (e.g., data
inconsistencies), security breaches (e.g., information leaks), expected performance,
and the impact of software supply-chain trojans.

Past vulnerabilities

$ make soaap
*** Sandboxed method "parse" has a past-vulnerability
*** annotation for "CVE-2005-ABC". Another vulnerability
*** here would leak the following:
+++ Read access to file descriptor "ifd"

*** Method "not_sandboxed" had past vulnerability
*** "CVE-2005-DEF" but is not sandboxed. Another
*** vulnerability here could leak ambient authority
*** including full network and file system access.

1 __soaap_sandbox_ephemeral("parser")
2 void parse(__soaap_read_fd int ifd, DOMTree* t) {
3 …
4 if (...) {
5 __soaap_vuln_pt("CVE-2005-ABC");
 ...
10 }
 ...
13 }
14
15 __soaap_vuln_fn("CVE-2005-DEF")
16 void not_sandboxed() {
17 ...
18 }

#include <capabilities.h>
...

// The compiler automatically inserts the bounds limits
capability int *buffer =
 (capability int*)malloc(size);

// Size can be computed from the capability here, or
// made explicit so the code can be compiled on a
// non-capability-aware architecture
fillArray(buffer, size);

// This overflows the bounds and so will trap at run time
int retVal = buffer[size];

// If this isn't a valid capability, do nothing
if (!__builtin_cheri_get_cap_tag(array)) return;

// const is enforced with capability protections
capability const int *x = array;

// This will abort at run time:
fillArray((capability int*)x, cap_get_length(x));

Application compartmentalization on CHERI
With increasingly mature CHERI processor
prototypes, CHERI Clang/LLVM, and
CheriBSD, we are turning our attention to
deploying CHERI features around the OS and
application. In November 2012, we
demonstrated a bespoke presentation
package, CheriPoint, able to perform
granular sandboxing when rendering
composed slide decks from many sources.
We are now applying CHERI features in off-the-shelf applications such as tcpdump,
experimenting with memory protection and fine-grained sandboxing.

tcpdump is a widely used packet capture and interpretation tool; it is able to render
and analyse packet sequences including low-level network characteristics (e.g.,
Ethernet/IP/TCP headers) and application-level features (e.g., NFS RPC decoding).
With a large library of protocol dissectors able to render packets from a broad range
of protocols, tcpdump is subject to a large attack surface. Further, tcpdump is also
frequently used in security-sensitive environments: analysing traffic off the Internet,
and when diagnosing suspicious traffic or in-progress attacks.

cheri_tcpdump is an adaptation of tcpdump using the CHERI model: memory
protection, fine-grained compartmentalization, and incremental deployability. We
are using tcpdump to explore dynamic compartmentalization: adaptive adjustment
of performance investment in security responding to changing security parameters.

CheriBSD hybrid capability OS
CheriBSD is an adaptation of the FreeBSD
operating system to utilize features of the
CHERI ISA. CheriBSD relies heavily on
CHERI’s hybridization support, allowing us
to deploy in-process memory protection and
sandbox incrementally. FreeBSD has been
extended to:

• Maintain CHERI registers for user threads
• Selectively utilize CHERI memory

 protection via CHERI Clang/LLVM
• Implement CCall/CReturn fast exceptions:

 object-capability invocation
• Implement a CHERI “trusted stack”

 tracking object-capability invocation
• Recover from sandbox faults, such as

 memory errors, returning control to the invoking application (or sandbox)
• Provide a libcheri(3) API allowing applications to create and invoke sandboxes
• Implement monitoring extensions to the procstat(1) tool to track sandbox state
• Support CHERI debugging extensions for CHERI LLDB
• Support on-board peripherals such as Ethernet, display, flash, and SD card

In the coming months, we plan to implement further CheriBSD features including
deploying CHERI memory protection through more of the CheriBSD userspace, and
deploying additional sandboxing around the system.

Capability Hardware Enhanced RISC Instructions (CHERI)
CHERI provides fine-grained protection within address spaces, complementing
virtual-memory based processes to efficiently support compartmentalization:

• Uses a reduced instruction set computer (RISC) approach, providing tools for
compiler and operating system writers while minimizing hardware complexity.

• Targets low-level software TCBs: OS kernels, language runtimes and web
browsers, as well as high-risk data processing such as video decoding.

• Allows simultaneous implementation of different security models, reflecting
diverse OSs, programming languages, and application requirements.

• Implements a hybrid capability model supporting current software side-by-side
with components employing fine-grained compartmentalization.

We have developed two CHERI prototypes, synthesizable to FPGA. CheriCloud
allows remote access to systems running conventional and adapted software. BERI
Open Systems CIC, a non-profit UK company, will open source CHERI in 2014.

% ssh ctsrd@cheritest.sec.cl.cam.ac.uk
Last login: Thu Nov 14 01:54:08 2013 from c0188.aw.cl.cam.ac.uk
FreeBSD 11.0-CURRENT (CHERI_DE4_SDROOT) #4 011d9a4(master)-dirty: Mon Jan 6 13:19:44 GMT 2014
rt@c0188:~% slogin rnw24@cheritest.sec.cl.cam.ac.uk

% procstat -RX 11180
 PID COMM CLASS METHOD INVOKE FAULT LMIN LMAX SMIN SMAX SMEAN SMEDIAN
11180 cheritest cheritest-helper.bin md5 5 0 11133 56396 11133 56396 22383 11831
11180 cheritest cheritest-helper.bin abort 2 2 3048 3288 3048 3288 3168 3168
11180 cheritest cheritest-helper.bin puts 3 0 419754 598131 419754 598131 508887 508777
11180 cheritest cheritest-helper.bin syscall 3 0 6836 7581 6836 7581 7228 7269
11180 cheritest cheritest-helper.bin divzero 4 4 2915 3188 2915 3188 3050 3049

Compartmentalized "fetch" programConventional "fetch" program

Kernel

main
loop

vulnerable
HTTP fetch

logic

Kernel

Conventional
UNIX process

Capability mode process

main
loop

vulnerable
HTTP fetch

logic

tcpdump -i atse0 | head -20
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on atse0, link-type EN10MB (Ethernet), capture size 65535 bytes
02:21:41.658068 IP cheritest.sec.cl.cam.ac.uk.ssh > c0188.aw.cl.cam.ac.uk.49225: Flags [P.], seq
101973773:101973889, ack 1807744729, win 1040, options [nop,nop,TS val 1123802448 ecr 91588452], length 116
02:21:41.661524 IP c0188.aw.cl.cam.ac.uk.49225 > cheritest.sec.cl.cam.ac.uk.ssh: Flags [.], ack 116, win 8184,
options [nop,nop,TS val 91597245 ecr 1123802448], length 0
02:21:41.688266 IP cheritest.sec.cl.cam.ac.uk.ssh > c0188.aw.cl.cam.ac.uk.49225: Flags [P.], seq 116:232, ack 1,
win 1040, options [nop,nop,TS val 1123802478 ecr 91597245], length 116
02:21:41.691326 IP c0188.aw.cl.cam.ac.uk.49225 > cheritest.sec.cl.cam.ac.uk.ssh: Flags [.], ack 232, win 8184,
options [nop,nop,TS val 91597275 ecr 1123802478], length 0
02:21:41.871254 IP gw-2456.route-nwest.net.private.cam.ac.uk.1985 > 224.0.0.102.1985: HSRPv1
02:21:41.929941 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id 83e7.00:1c:0e:50:40:00.800f, length 42
02:21:41.946293 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id 806c.00:1c:0e:50:40:00.800f, length 42

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance "pure" capability code

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web browser

Java
Script

Separation kernel

C++ RT

Pure
capability C,
Objective C,

or OCaml
Unikernellibc executive libc executive

CHERI

Unikernel
executive

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Fetch

libc executive

Capability C,
Objective C,

or OCaml
UNIX

application
zlib

