
Security-Oriented Analysis
of Application Programs

(SOAAP)
Robert Watson, Khilan Gudka, Steven Hand,

Ben Laurie (Google), Anil Madhavapeddy

Workshop on Adaptive Host and Network Security
Lyon, France

Friday 14th September 2012

Approved for public release. This research is sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL),
under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and should not be interpreted as
representing the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.

The Enemy ®

• Today’s adversary is very sophisticated and
able to execute arbitrary code through
many means

• It’s not just about buffer overflows any more

• Software stack comprises components from
numerous untrusted origins. How do we
know they do not contain trojans or
backdoors? [Android hoover problem]

2

The Battlefield ®

3

fetch

libmd

libc

libcrypto

libfetch libssl depends

The Battlefield ®

3

We need mitigation techniques that can work for
both known and unknown vulnerabilities

fetch

libmd

libc

libcrypto

libfetch libssl depends

Principle of least privilege

• Traditionally, UNIX processes run with the
ambient rights of the user executing them

• An exploited vulnerability leaks all ambient rights

• But capturing policy for required rights is very
difficult

4

[Saltzer and Schroeder, 1975]

Principle of least privilege

• Traditionally, UNIX processes run with the
ambient rights of the user executing them

• An exploited vulnerability leaks all ambient rights

• But capturing policy for required rights is very
difficult

4

Solution: minimise the amount of code that runs
with elevated privileges (TCB) and execute the rest
in least privileged sandboxes with limited rights:
E.g. “only read file X and write file Y”

[Saltzer and Schroeder, 1975]

Principle of least privilege

• Traditionally, UNIX processes run with the
ambient rights of the user executing them

• An exploited vulnerability leaks all ambient rights

• But capturing policy for required rights is very
difficult

4

Solution: minimise the amount of code that runs
with elevated privileges (TCB) and execute the rest
in least privileged sandboxes with limited rights:
E.g. “only read file X and write file Y”

[Saltzer and Schroeder, 1975]

Software
compartmentalisation

• Software compartmentalisation decomposes applications into
many isolated components

• Each runs with only the rights required to perform its function

Compartmentalized "fetch" programConventional "fetch" program

Kernel

main
loop

vulnerable
HTTP fetch

logic

Kernel

Conventional
UNIX process

Capability mode process

main
loop

vulnerable
HTTP fetch

logic

5

Compartmentalized "fetch" programConventional "fetch" program

Kernel

main
loop

vulnerable
HTTP fetch

logic

Kernel

Conventional
UNIX process

Capability mode process

main
loop

vulnerable
HTTP fetch

logic

6

When a conventional application is compromised, its
ambient rights are leaked to the attacker, e.g., full

network and file system access.

When a compartmentalised application is compromised, only
rights held by the exploited component leak to the attacker.

Most vulnerabilities will no longer yield significant rights, and
attackers must exploit many vulnerabilities to meet their goals.

• Applications can be compartmentalized in
many different ways, trading off security,
performance and complexity.

• Finer-grained decompositions mitigate
vulnerabilities better, as attacks yield fewer
rights.

• The combination of code-centered and data-
centered compartmentalisations aligns with
the object-capability model

7

fetch

HTTP GET
sandboxHTTP/SSL

sandbox

Code-centred compartmentalization
D

at
a-

ce
nt

er
ed

 c
om

pa
rt

m
en

ta
liz

at
io

n

fetch
main loop

http

ssl

SSL
sandbox

HTTP auth
sandbox

fetch
main loop

http auth

ssl

http get

SSL
sandbox

HTTP
sandbox

fetch
main loop

http

ssl

URL-specific sandbox
URL-specific sandbox

URL-specific sandbox

main loop

http

ssl

fetch

Site-specific sandbox
Site-specific sandbox

main loop

http

ssl

Lessons from Capsicum

• Multi-year Cambridge/Google research project
into the structure of operating system security
(Watson, Anderson, Laurie, Kennaway)

• Capsicum: new operating system primitives
for application compartmentalisation, reference
application suite including Chromium

8

Lessons from Capsicum

• Multi-year Cambridge/Google research project
into the structure of operating system security
(Watson, Anderson, Laurie, Kennaway)

• Capsicum: new operating system primitives
for application compartmentalisation, reference
application suite including Chromium

8

Lesson: software designs that employ the principle of
least privilege are neither easily nor efficiently
represented in current hardware

Capability Hardware Enhanced
RISC Instructions (CHERI)

• Joint SRI/Cambridge project

• Modify hardware platform
to enforce program
protection

• Capability registers, tagged memory

• Replace context switches with
hardware message passing within
an address space

• Apply RISC design philosophy:
minimal, compiler-friendly hardware
support to provide efficient
protection

9

Compartmentalisation is hard!

• Compartmentalisation turns a “local” program
into a distributed one

• Have to preserve functional correctness

• e.g. data synchronisation/consistency

• Many different compartmentalisations present
trade-offs: performance, security and
complexity

• Have to find a mapping from intended goals to the
underlying sandboxing technology

10

Gzip

• Compartmentalisation helps to mitigate
vulnerabilities:

“The gzip program contains a stack modification
vulnerability that may allow an attacker to
execute arbitrary code, or create a denial-
of-service condition...”

[Source: http://www.kb.cert.org/vuls/id/381508]

11

http://www.kb.cert.org/vuls/id/381508
http://www.kb.cert.org/vuls/id/381508

Gzip

• But getting it right is difficult, even for simple
programs!

“In adapting gzip, we were initially surprised to see a
performance improvement; investigation of this unlikely
result revealed that we had failed to propagate
the compression level (a global variable) into the
sandbox, leading to the incorrect algorithm selection.”

[Watson et al. “Capsicum: practical capabilities for
UNIX,” USENIX Security 2010]

12

Sandboxing platforms:
Chromium

OS Sandbox LoC FS IPC NET S≠S′ Priv

DACDAC

MACMAC

CapCap

Windows DAC ACLs 22,350 ⚠ ⚠ ✘ ✘ ✔

Linux chroot() 600 ✔ ✘ ✘ ✔ ✘

Mac OS X Sandbox 560 ✔ ⚠ ✔ ✔ ✔

Linux SELinux 200 ✔ ⚠ ✔ ✘ ✘

Linux seccomp 11,300 ⚠ ✔ ✔ ✔ ✔

FreeBSD Capsicum 100 ✔ ✔ ✔ ✔ ✔

13

• Motivated by the programmability problem in application compartmentalisation

• Allow application programmers to easily evaluate trade-offs through semi-
automated analysis of possible compartmentalisations

• Annotation-driven static and dynamic program analysis and refinement of
source code – and eventually program transformation

14

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

Security-oriented analysis of
application programs (SOAAP)

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

• Global state that can be accessed by sandboxes

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

• Global state that can be accessed by sandboxes

• Descriptors that can be read/written by sandboxes

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

• Global state that can be accessed by sandboxes

• Descriptors that can be read/written by sandboxes

• System calls accessible to sandboxes

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

• Global state that can be accessed by sandboxes

• Descriptors that can be read/written by sandboxes

• System calls accessible to sandboxes

• Privileges available via RPC interfaces

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

• Global state that can be accessed by sandboxes

• Descriptors that can be read/written by sandboxes

• System calls accessible to sandboxes

• Privileges available via RPC interfaces

• Data that is confidential and should not be leaked

Security-oriented analysis of
application programs (SOAAP)

15

• Given compartmentalisation goals, SOAAP allows the
programmer to annotate:

• Functions that should run sandboxed

• Global state that can be accessed by sandboxes

• Descriptors that can be read/written by sandboxes

• System calls accessible to sandboxes

• Privileges available via RPC interfaces

• Data that is confidential and should not be leaked

• Code that is deemed risky

Security-oriented analysis of
application programs (SOAAP)

15

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

16

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

17

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

18

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

19

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

20

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

20

Static

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

20

Static

Dynamic

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

21

Security-oriented analysis of
application programs (SOAAP)

Risk
analysis

Information
flow

analysis

Application
change

and
hypothesis
refinement

recommendations

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations

Sandbox
characterisation Call graph

analysis

Clang LLVM Valgrind

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Repeated SOAAP iteration as program and hypotheses are refined

22

Security-oriented analysis of
application programs (SOAAP)

Example

• Let’s compartmentalise FreeBSD’s gzip

• As a first pass, hypothetically sandbox the
gz_compress() function

• Compile with our modified Clang/LLVM
and run with our modified Valgrind

23

Example

24

Example
“What would happen if I were to sandbox

gz_compress()?”

24

Example

Sandbox read global variable "numflag" in
method gz_compress, but it is not allowed to.
==9336== at 0x804C27D: gz_compress (gzip.c:581)
==9336== by 0x804B5D6: handle_file (gzip.c:1283)
==9336== by 0x804A279: main (gzip.c:1817)

25

Example

Sandbox read global variable "numflag" in
method gz_compress, but it is not allowed to.
==9336== at 0x804C27D: gz_compress (gzip.c:581)
==9336== by 0x804B5D6: handle_file (gzip.c:1283)
==9336== by 0x804A279: main (gzip.c:1817)

Unspecified global variable access
may lead to a bug

25

Example

Sandbox read global variable "numflag" in
method gz_compress, but it is not allowed to.
==9336== at 0x804C27D: gz_compress (gzip.c:581)
==9336== by 0x804B5D6: handle_file (gzip.c:1283)
==9336== by 0x804A279: main (gzip.c:1817)

Unspecified global variable access
may lead to a bug

Stack trace so programmer can pinpoint

25

Example

26

Example

Annotate numflag as
readable from sandboxes

26

Global variable "numflag" is being written to in
method main after a sandbox has been created
and so the sandbox will not see this new value.
==9381== at 0x8049F83: main (gzip.c:329)

Example

27

Global variable "numflag" is being written to in
method main after a sandbox has been created
and so the sandbox will not see this new value.
==9381== at 0x8049F83: main (gzip.c:329)

Example
Write to global variable outside the

sandbox will not be propagated

27

Global variable "numflag" is being written to in
method main after a sandbox has been created
and so the sandbox will not see this new value.
==9381== at 0x8049F83: main (gzip.c:329)

Example
Write to global variable outside the

sandbox will not be propagated

27

Global variable "numflag" is being written to in
method main after a sandbox has been created
and so the sandbox will not see this new value.
==9381== at 0x8049F83: main (gzip.c:329)

Example
Write to global variable outside the

sandbox will not be propagated

27Write to numflag

Sandbox read from /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt (fd: 3) in method __sys_read, but it
is not allowed to.
==9381== at 0x172D03: __sys_read (in /lib/libc.so.7)
==9381== by 0x804B5E6: handle_file (gzip.c:1283)
==9381== by 0x804A289: main (gzip.c:1817)

Sandbox wrote to /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt.gz (fd: 4) in method __sys_write,
but it is not allowed to.
==9381== at 0x172CE3: __sys_write (in /lib/libc.so.7)
==9381== by 0x804B5E6: handle_file (gzip.c:1283)
==9381== by 0x804A289: main (gzip.c:1817)

Example

28

Sandbox read from /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt (fd: 3) in method __sys_read, but it
is not allowed to.
==9381== at 0x172D03: __sys_read (in /lib/libc.so.7)
==9381== by 0x804B5E6: handle_file (gzip.c:1283)
==9381== by 0x804A289: main (gzip.c:1817)

Sandbox wrote to /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt.gz (fd: 4) in method __sys_write,
but it is not allowed to.
==9381== at 0x172CE3: __sys_write (in /lib/libc.so.7)
==9381== by 0x804B5E6: handle_file (gzip.c:1283)
==9381== by 0x804A289: main (gzip.c:1817)

Example
Unspecified file read.

Sandbox is accessing a
resource it does not
have permission to.

28

Sandbox read from /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt (fd: 3) in method __sys_read, but it
is not allowed to.
==9381== at 0x172D03: __sys_read (in /lib/libc.so.7)
==9381== by 0x804B5E6: handle_file (gzip.c:1283)
==9381== by 0x804A289: main (gzip.c:1817)

Sandbox wrote to /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt.gz (fd: 4) in method __sys_write,
but it is not allowed to.
==9381== at 0x172CE3: __sys_write (in /lib/libc.so.7)
==9381== by 0x804B5E6: handle_file (gzip.c:1283)
==9381== by 0x804A289: main (gzip.c:1817)

Example
Unspecified file read.

Sandbox is accessing a
resource it does not
have permission to.

Unspecified file
write

28

Example

29

Example

29

“Can read from
file descriptor in”

Example

29

“Can read from
file descriptor in”

“Can write to
file descriptor out”

Example

29

We are effectively annotating the program to use
Capsicum: sandboxes, delegated rights, call gates, etc.

“Can read from
file descriptor in”

“Can write to
file descriptor out”

Advantages of SOAAP

• Validate functional correctness

30

Advantages of SOAAP

• Validate functional correctness

• Validate security requirements

30

Advantages of SOAAP

• Validate functional correctness

• Validate security requirements

• Modulo different sandboxing technologies
(e.g. Capsicum, seccomp, SELinux, chroot/setuid).

30

OS Sandbox LoC FS IPC NET S≠S′ Priv

DACDAC

MACMAC

CapCap

Windows DAC ACLs 22,350 ⚠ ⚠ ✘ ✘ ✔

Linux chroot() 600 ✔ ✘ ✘ ✔ ✘

Mac OS X Sandbox 560 ✔ ⚠ ✔ ✔ ✔

Linux SELinux 200 ✔ ⚠ ✔ ✘ ✘

Linux seccomp 11,300 ⚠ ✔ ✔ ✔ ✔

FreeBSD Capsicum 100 ✔ ✔ ✔ ✔ ✔

Advantages of SOAAP

• Validate functional correctness

• Validate security requirements

• Modulo different sandboxing technologies
(e.g. Capsicum, seccomp, SELinux, chroot/setuid).

• Incremental sandboxing and testing

31

Advantages of SOAAP

• Validate functional correctness

• Validate security requirements

• Modulo different sandboxing technologies
(e.g. Capsicum, seccomp, SELinux, chroot/setuid).

• Incremental sandboxing and testing

• Trade-off exploration

31

Advantages of SOAAP

• Validate functional correctness

• Validate security requirements

• Modulo different sandboxing technologies
(e.g. Capsicum, seccomp, SELinux, chroot/setuid).

• Incremental sandboxing and testing

• Trade-off exploration

• Can also validate the correctness/security of
already compartmentalised programs

31

Future plans

• Confidentiality - employ information flow
analyses to validate flows for sensitive data

• Risk - automate the classification of risky
code, e.g. machine learning, fuzzbuster

• Sandbox characterisations

• Apply SOAAP annotations to already-
compartmentalised software

32

Proposed Evaluation

• How do false positive and negative rates arising
out of the unsoundness of C-language program
analysis affect the user experience?

33

Proposed Evaluation

• How do false positive and negative rates arising
out of the unsoundness of C-language program
analysis affect the user experience?

• When applied to a back catalogue of known
compartmentalisation bugs, are all found, and if
not, why not?

33

Proposed Evaluation

• How do false positive and negative rates arising
out of the unsoundness of C-language program
analysis affect the user experience?

• When applied to a back catalogue of known
compartmentalisation bugs, are all found, and if
not, why not?

• Are new bugs found in previously
compartmentalised programs, illustrating the
benefits of this approach?

33

Proposed Evaluation

• Once a viable and desirable compartmentalisation is
identified, and then implemented by the
programmer, are there other problems that arise?

34

Proposed Evaluation

• Once a viable and desirable compartmentalisation is
identified, and then implemented by the
programmer, are there other problems that arise?

• Do performance predictions made by SOAAP
prove accurate?

34

Proposed Evaluation

• Once a viable and desirable compartmentalisation is
identified, and then implemented by the
programmer, are there other problems that arise?

• Do performance predictions made by SOAAP
prove accurate?

• Can we scale up SOAAP-based exploration to both
very large collections of programs, such as the
footprint of a complete UNIX system, or
individually large (monolithic) applications such as
web browsers and mail clients?

34

Acknowledgements

• This work was sponsored by DARPA and
Google

• Builds on taintgrind tool by Wei Ming Khoo

• Originally designed for malware analysis...

35

Closing remarks

• Goal is to release the SOAAP tools as open
source: http://github.com/CTSRD-SOAAP/

• Talk was well received at the recent
FreeBSD developer summit held in
Cambridge

• Lots of interest from Capsicum developers

• Already downloading and using SOAAP

36

http://github.com/CTSRD-SOAAP/
http://github.com/CTSRD-SOAAP/

