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The Enemy ®

• Today’s adversary is very sophisticated and 
able to execute arbitrary code through 
many means

• It’s not just about buffer overflows any more

• Software stack comprises components from 
numerous untrusted origins. How do we 
know they do not contain trojans or 
backdoors? [Android hoover problem]
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We need mitigation techniques that can work for 
both known and unknown vulnerabilities
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Principle of least privilege

• Traditionally, UNIX processes run with the 
ambient rights of the user executing them

• An exploited vulnerability leaks all ambient rights

• But capturing policy for required rights is very 
difficult

4
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Software 
compartmentalisation

• Software compartmentalisation decomposes applications into 
many isolated components

• Each runs with only the rights required to perform its function
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When a conventional application is compromised, its 
ambient rights are leaked to the attacker, e.g., full 

network and file system access.

When a compartmentalised application is compromised, only 
rights held by the exploited component leak to the attacker.

Most vulnerabilities will no longer yield significant rights, and 
attackers must exploit many vulnerabilities to meet their goals.



• Applications can be compartmentalized in 
many different ways, trading off security, 
performance and complexity.

• Finer-grained decompositions mitigate 
vulnerabilities better, as attacks yield fewer 
rights.

• The combination of code-centered and data-
centered compartmentalisations aligns with 
the object-capability model
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Lessons from Capsicum

• Multi-year Cambridge/Google research project 
into the structure of operating system security 
(Watson, Anderson, Laurie, Kennaway)

• Capsicum: new operating system primitives 
for application compartmentalisation, reference 
application suite including Chromium
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Lesson: software designs that employ the principle of 
least privilege are neither easily nor efficiently 
represented in current hardware



Capability Hardware Enhanced 
RISC Instructions (CHERI)

• Joint SRI/Cambridge project

• Modify hardware platform 
to enforce program 
protection

• Capability registers, tagged memory

• Replace context switches with 
hardware message passing within 
an address space

• Apply RISC design philosophy: 
minimal, compiler-friendly hardware 
support to provide efficient 
protection
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Compartmentalisation is hard!

• Compartmentalisation turns a “local” program 
into a distributed one

• Have to preserve functional correctness

• e.g. data synchronisation/consistency

• Many different compartmentalisations present 
trade-offs: performance, security and 
complexity

• Have to find a mapping from intended goals to the 
underlying sandboxing technology
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Gzip

• Compartmentalisation helps to mitigate 
vulnerabilities:

“The gzip program contains a stack modification 
vulnerability that may allow an attacker to 
execute arbitrary code, or create a denial-
of-service condition...”

[Source: http://www.kb.cert.org/vuls/id/381508]
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Gzip

• But getting it right is difficult, even for simple 
programs!

“In adapting gzip, we were initially surprised to see a 
performance improvement; investigation of this unlikely 
result revealed that we had failed to propagate 
the compression level (a global variable) into the 
sandbox, leading to the incorrect algorithm selection.”

[Watson et al. “Capsicum: practical capabilities for 
UNIX,” USENIX Security 2010]
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Sandboxing platforms: 
Chromium

OS Sandbox LoC FS IPC NET S≠S′ Priv

DACDAC

MACMAC

CapCap

Windows DAC ACLs 22,350  ⚠ ⚠ ✘ ✘ ✔

Linux chroot() 600 ✔ ✘ ✘ ✔ ✘

Mac OS X Sandbox 560 ✔ ⚠ ✔ ✔ ✔

Linux SELinux 200 ✔ ⚠ ✔ ✘ ✘

Linux seccomp 11,300 ⚠ ✔ ✔ ✔ ✔

FreeBSD Capsicum 100 ✔ ✔ ✔ ✔ ✔

13



• Motivated by the programmability problem in application compartmentalisation

• Allow application programmers to easily evaluate trade-offs through semi-
automated analysis of possible compartmentalisations 

• Annotation-driven static and dynamic program analysis and refinement of 
source code – and eventually program transformation
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Example

• Let’s compartmentalise FreeBSD’s gzip

• As a first pass, hypothetically sandbox the 
gz_compress() function

• Compile with our modified Clang/LLVM 
and run with our modified Valgrind
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Example
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Example
“What would happen if I were to sandbox 

gz_compress()?”
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Example

Sandbox read global variable "numflag" in 
method gz_compress, but it is not allowed to.
==9336==    at 0x804C27D: gz_compress (gzip.c:581)
==9336==    by 0x804B5D6: handle_file (gzip.c:1283)
==9336==    by 0x804A279: main (gzip.c:1817)
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Example

Annotate numflag as 
readable from sandboxes
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Global variable "numflag" is being written to in 
method main after a sandbox has been created 
and so the sandbox will not see this new value. 
==9381==    at 0x8049F83: main (gzip.c:329)

Example
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Sandbox read from /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt (fd: 3) in method __sys_read, but it 
is not allowed to.
==9381==    at 0x172D03: __sys_read (in /lib/libc.so.7)
==9381==    by 0x804B5E6: handle_file (gzip.c:1283)
==9381==    by 0x804A289: main (gzip.c:1817)

Sandbox wrote to /usr/home/khilan/nfs/bsd_src/
usr.bin/gzip/test.txt.gz (fd: 4) in method __sys_write, 
but it is not allowed to.
==9381==    at 0x172CE3: __sys_write (in /lib/libc.so.7)
==9381==    by 0x804B5E6: handle_file (gzip.c:1283)
==9381==    by 0x804A289: main (gzip.c:1817)

Example
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“Can read from
file descriptor in”

“Can write to
file descriptor out”



Example
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We are effectively annotating the program to use 
Capsicum: sandboxes, delegated rights, call gates, etc.

“Can read from
file descriptor in”

“Can write to
file descriptor out”
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Advantages of SOAAP

• Validate functional correctness

• Validate security requirements

• Modulo different sandboxing technologies
(e.g. Capsicum, seccomp, SELinux, chroot/setuid).

• Incremental sandboxing and testing

• Trade-off exploration

• Can also validate the correctness/security of 
already compartmentalised programs

31



Future plans

• Confidentiality - employ information flow 
analyses to validate flows for sensitive data

• Risk - automate the classification of risky 
code, e.g. machine learning, fuzzbuster

• Sandbox characterisations

• Apply SOAAP annotations to already-
compartmentalised software
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Proposed Evaluation

• How do false positive and negative rates arising 
out of the unsoundness of C-language program 
analysis affect the user experience?
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Proposed Evaluation

• Once a viable and desirable compartmentalisation is 
identified, and then implemented by the 
programmer, are there other problems that arise?

• Do performance predictions made by SOAAP 
prove accurate?

• Can we scale up SOAAP-based exploration to both 
very large collections of programs, such as the 
footprint of a complete UNIX system, or 
individually large (monolithic) applications such as 
web browsers and mail clients?
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Closing remarks

• Goal is to release the SOAAP tools as open 
source: http://github.com/CTSRD-SOAAP/

• Talk was well received at the recent 
FreeBSD developer summit held in 
Cambridge 

• Lots of interest from Capsicum developers

• Already downloading and using SOAAP

36

http://github.com/CTSRD-SOAAP/
http://github.com/CTSRD-SOAAP/

